
CONCEPT: FETAL HEMOGLOBIN

- A fetus has structurally *different* Hb because it must be able to ______ O₂ from its mother's blood.
 - \Box Fetal hemoglobin (FHb) has two _____ (γ) subunits rather than two β subunits (Fetal hemoglobin: $\alpha_2\gamma_2$).
- ●FHb therefore has a *low* affinity for BPG, which correlates with ______ O₂ affinity.
 - ☐ This allows _____ flow from the maternal oxyhemoglobin (HbO₂) to the fetal deoxyhemoglobin (FHb).

EXAMPLE: According to the dissociation constants (K_d) in the plot below, which hemoglobin has a stronger affinity for O₂?

- a) Adult Hb.
- b) Fetal Hb.

PRACTICE: Fetal hemoglobin binds oxygen with a ______ affinity than adult hemoglobin, because it lacks the binding site for _____, which is an allosteric _____ of oxygen binding to adult hemoglobin.

- a) Lower; BPG; inhibitor.
- b) Higher; H+; inhibitor.
- c) Higher; BPG; activator.
- d) Higher; BPG; inhibitor.
- e) Lower; CO; inhibitor.

PRACTICE: Why is the decreased affinity of fetal hemoglobin for BPG advantageous?

- a) With more BPG molecules bound, there are less heme groups available for O₂ binding.
- b) Decreased BPG binding biases FHb toward the R state.
- c) More free BPG is available to bind adult hemoglobin, resulting in its shift to the R state.
- d) BPG is available to bind to fetal myoglobin, helping to release O₂ in fetal muscle tissue.