CONCEPT: SPECIFICITY CONSTANT

 Characterizing enzy 	vmes in a lab under	saturating [S]	is useful; HOWEVE	R. [S]	l are not alwa	vs saturatina.
- Onalactonizing one	gilloo iii a lab allaoi	oatarating [10 acciai, 110 11 L	`, _	aro mot ama	, o catarating.

 \Box Under _____ conditions, the [S] ____ K_m.

□ Also, saturating [S] does not allow us to account for _____ binding affinity since [E]_T = [ES].

 \Box This means that maximal catalytic efficiency (k_{cat}) at saturating [S] is not always the most relevant measure.

Ratio of K_{cat} to K_m Measures Catalytic Efficiency at Low [S]

• _____ constant = the ratio of
$$\frac{\kappa_{\text{cat}}}{\kappa_{\text{m}}}$$
 = an enzyme's "preference" for a substrate at _____-saturating or low [S].

- □ Substrate "preference" is determined by catalytic efficiency, but depends on [___] (saturating or non-saturating).
- □ Recall: chymotrypsin has a "preference" for which amino acids it recognizes for cleavage.

•Ratio of
$$\frac{\mathbf{K}_{\text{cat}}}{\mathbf{K}_{\text{m}}}$$
 is another measure of catalytic _____ when an enzyme is *not* saturated with substrate.
□ Ratio accounts for both max catalytic efficiency (k_{cat}) and E _____ for \$ (\mathbf{K}_{m}).

Enzyme preference for S

- □ Larger ratios represent _____ efficient enzymes and therefore higher preference for S at low [S].
- □ Max value of $\frac{\kappa_{cat}}{\kappa_m} \approx 10^9 \text{ M}^{-1}\text{s}^{-1}$.

	catalytic efficiency ONLY at saturating [S]			Catalytic efficiency at		
Enzyme	k_{cat} = Turnover Number (s ⁻¹) *Under Saturating [S]	k _{cat} Speed? ↑Fast or ↓slow?	K _m (M)	ES Affinity ↑Strong or ↓weak?	$\frac{k_{\text{cat}}}{K_{\text{m}}}$ (M ⁻¹ s ⁻¹)	
Urease	10,000		2.5 x 10 ⁻²		4.0 x 10 ⁵	
Penicillinase	2000		5 x 10 ⁻⁵		4.0 x 10 ⁷	
Chymotrypsin	substrate = F, Y, W Preferred 100		6.6 x 10 ⁻⁴		1.5 x 10 ⁵	
	substrate = L, M Preferred 0.63		1.1 x 10 ⁻⁴		5.8 x 10 ³	
	substrate = K Preferred 0.02		5.9 x 10 ⁻⁴		3.4 x 10 ¹	
				Υ		

PRACTICE: Use the data in the chart below to provide answers to the following problems:

A) List the substrates from most preferred to least preferred under physiological conditions.

a) B, A, C. b) C, B, A. c) B, C, A.

d) A, C, B.

Substrate	k _{cat} (s ⁻¹)	K _m (M)
Substrate A	0.36	0.071
Substrate B	2.80	0.025
Substrate C	0.14	0.015

B) List the substrates from most preferred to least preferred under saturating [S].

a) B, A, C.

b) C, B, A. c) B, C, A.

d) A, C, B.

CONCEPT: SPECIFICITY CONSTANT

Diffusion-Controlled Limit of Specificity Constant

- •The _____ value of the $\frac{\kappa_{cat}}{\kappa_{m}}$ ratio is limited by k_1 (E + S _____ rate constant).
 - □ E + S association occurs via _____ & can only proceed as fast as the *max* rate of diffusion in solvent.
 - □ Therefore, the max values of k_1 and $\frac{\mathbf{K}_{\text{cat}}}{\mathbf{K}_{\text{m}}}$ are equal to the max rate of diffusion in H₂O ≈ _____ M⁻¹s⁻¹.

Rate constant (k_1) , K_m , and specificity constant $(\frac{k_{\rm cat}}{K_m})$ all directly limited by max rate of _____ \approx 10⁹ M⁻¹s⁻¹

• Catalytically _____ Enzyme: an enzyme whose $\frac{\kappa_{cat}}{\kappa_m}$ is equal to this diffusion-controlled max value.

PRACTICE: Which of the following options is correct concerning the turnover number (k_{cat}) and the specificity constant?

- a) k_{cat} reveals how well an enzyme works & its preference for S.
- d) $k_{\text{cat}} = V_{\text{max}}/[\text{ES}]$.

b) Specificity constant is defined as $(k_{cat})(K_m)$.

e) Specificity constant is defined as K_m / k_{cat}.

c) A large k_{cat} indicates a less efficient enzyme.

f) A small K_m indicates a more efficient enzyme.

PRACTICE: Use the Lineweaver-Burk plot to help you calculate the V_{max}, k_{cat} , K_m and specificity constant for the enzyme.

Assume the $[E]_T = 2.9$ nM. Hint: Pay close attention to units. $V_{max} =$ ______.

CONCEPT: SPECIFICITY CONSTANT

PRACTICE: Explain the steps you could take to accurately find the K_m , V_{max} , and specificity constant for an enzyme from the following kinetic data, assuming the experiments were all done with $[E]_T = 0.1$ mM.

[S] (M)	Vo (M/s)
0.001	5.88
0.002	10.5
0.004	17.4
0.008	25.8
0.016	34
0.032	40.5

Step #1:	 	
Step #2:		
Step #3:		
Step #4:		
Step #5:	 	

PRACTICE: The specificity constant is obtained at low [S] via variable substitution into the Michaelis-Menten equation $(V_{max} = k_{cat}[E]_T)$. Considering this about the MM-equation, what is the relationship between changes in [S] & V₀ when the [S] is super small and well below the K_m?

- a) The [S] term cancels out completely in this equation, so there is no effect of changing substrate concentration.
- b) The [S] term in the numerator is negligible, so there is no impact of changing substrate concentration.
- c) Because the enzyme has reached V_{max}, there is no effect of changing substrate concentrations on enzyme velocity.
- d) [S] term in the denominator is negligible compared to K_m, so the relationship between [S] & V₀ is directly proportional.

