CONCEPT: SPECIFICITY CONSTANT | Characterizing enzy | vmes in a lab under | saturating [S] | is useful; HOWEVE | R. [S] | l are not alwa | vs saturatina. | |---|-------------------------|----------------|---------------------|-----------------|----------------|-----------------| | - Onalactonizing one | gilloo iii a lab allaoi | oatarating [| 10 acciai, 110 11 L | `, _ | aro mot ama | , o catarating. | \Box Under _____ conditions, the [S] ____ K_m. □ Also, saturating [S] does not allow us to account for _____ binding affinity since [E]_T = [ES]. \Box This means that maximal catalytic efficiency (k_{cat}) at saturating [S] is not always the most relevant measure. # Ratio of K_{cat} to K_m Measures Catalytic Efficiency at Low [S] • _____ constant = the ratio of $$\frac{\kappa_{\text{cat}}}{\kappa_{\text{m}}}$$ = an enzyme's "preference" for a substrate at _____-saturating or low [S]. - □ Substrate "preference" is determined by catalytic efficiency, but depends on [___] (saturating or non-saturating). - □ Recall: chymotrypsin has a "preference" for which amino acids it recognizes for cleavage. •Ratio of $$\frac{\mathbf{K}_{\text{cat}}}{\mathbf{K}_{\text{m}}}$$ is another measure of catalytic _____ when an enzyme is *not* saturated with substrate. □ Ratio accounts for both max catalytic efficiency (k_{cat}) and E _____ for \$ (\mathbf{K}_{m}). Enzyme preference for S - □ Larger ratios represent _____ efficient enzymes and therefore higher preference for S at low [S]. - □ Max value of $\frac{\kappa_{cat}}{\kappa_m} \approx 10^9 \text{ M}^{-1}\text{s}^{-1}$. | | catalytic efficiency ONLY at saturating [S] | | | Catalytic efficiency at | | | |---------------|--|--|------------------------|----------------------------------|--|--| | Enzyme | k_{cat} = Turnover Number (s ⁻¹)
*Under Saturating [S] | k _{cat} Speed?
↑Fast or ↓slow? | K _m (M) | ES Affinity
↑Strong or ↓weak? | $\frac{k_{\text{cat}}}{K_{\text{m}}}$ (M ⁻¹ s ⁻¹) | | | Urease | 10,000 | | 2.5 x 10 ⁻² | | 4.0 x 10 ⁵ | | | Penicillinase | 2000 | | 5 x 10 ⁻⁵ | | 4.0 x 10 ⁷ | | | Chymotrypsin | substrate = F, Y, W Preferred 100 | | 6.6 x 10 ⁻⁴ | | 1.5 x 10 ⁵ | | | | substrate = L, M Preferred 0.63 | | 1.1 x 10 ⁻⁴ | | 5.8 x 10 ³ | | | | substrate = K Preferred 0.02 | | 5.9 x 10 ⁻⁴ | | 3.4 x 10 ¹ | | | | | | | Υ | | | **PRACTICE:** Use the data in the chart below to provide answers to the following problems: A) List the substrates from most preferred to least preferred under physiological conditions. a) B, A, C. b) C, B, A. c) B, C, A. d) A, C, B. | Substrate | k _{cat} (s ⁻¹) | K _m (M) | |-------------|-------------------------------------|--------------------| | Substrate A | 0.36 | 0.071 | | Substrate B | 2.80 | 0.025 | | Substrate C | 0.14 | 0.015 | B) List the substrates from most preferred to least preferred under saturating [S]. a) B, A, C. b) C, B, A. c) B, C, A. d) A, C, B. ### **CONCEPT: SPECIFICITY CONSTANT** # **Diffusion-Controlled Limit of Specificity Constant** - •The _____ value of the $\frac{\kappa_{cat}}{\kappa_{m}}$ ratio is limited by k_1 (E + S _____ rate constant). - □ E + S association occurs via _____ & can only proceed as fast as the *max* rate of diffusion in solvent. - □ Therefore, the max values of k_1 and $\frac{\mathbf{K}_{\text{cat}}}{\mathbf{K}_{\text{m}}}$ are equal to the max rate of diffusion in H₂O ≈ _____ M⁻¹s⁻¹. Rate constant (k_1) , K_m , and specificity constant $(\frac{k_{\rm cat}}{K_m})$ all directly limited by max rate of _____ \approx 10⁹ M⁻¹s⁻¹ • Catalytically _____ Enzyme: an enzyme whose $\frac{\kappa_{cat}}{\kappa_m}$ is equal to this diffusion-controlled max value. **PRACTICE:** Which of the following options is correct concerning the turnover number (k_{cat}) and the specificity constant? - a) k_{cat} reveals how well an enzyme works & its preference for S. - d) $k_{\text{cat}} = V_{\text{max}}/[\text{ES}]$. b) Specificity constant is defined as $(k_{cat})(K_m)$. e) Specificity constant is defined as K_m / k_{cat}. c) A large k_{cat} indicates a less efficient enzyme. f) A small K_m indicates a more efficient enzyme. **PRACTICE:** Use the Lineweaver-Burk plot to help you calculate the V_{max}, k_{cat} , K_m and specificity constant for the enzyme. Assume the $[E]_T = 2.9$ nM. Hint: Pay close attention to units. $V_{max} =$ ______. ### **CONCEPT: SPECIFICITY CONSTANT** **PRACTICE:** Explain the steps you could take to accurately find the K_m , V_{max} , and specificity constant for an enzyme from the following kinetic data, assuming the experiments were all done with $[E]_T = 0.1$ mM. | [S] (M) | Vo (M/s) | |---------|----------| | 0.001 | 5.88 | | 0.002 | 10.5 | | 0.004 | 17.4 | | 0.008 | 25.8 | | 0.016 | 34 | | 0.032 | 40.5 | | Step #1: |
 | | |----------|------|------| | Step #2: | | | | Step #3: | | | | | | | | Step #4: | | | | Step #5: |
 |
 | **PRACTICE**: The specificity constant is obtained at low [S] via variable substitution into the Michaelis-Menten equation $(V_{max} = k_{cat}[E]_T)$. Considering this about the MM-equation, what is the relationship between changes in [S] & V₀ when the [S] is super small and well below the K_m? - a) The [S] term cancels out completely in this equation, so there is no effect of changing substrate concentration. - b) The [S] term in the numerator is negligible, so there is no impact of changing substrate concentration. - c) Because the enzyme has reached V_{max}, there is no effect of changing substrate concentrations on enzyme velocity. - d) [S] term in the denominator is negligible compared to K_m, so the relationship between [S] & V₀ is directly proportional.