CONCEPT: BETA SHEET - β -sheets: consist of ____ or more β -strands arranged side-by-side. - □ Also known as β-_____ sheets because of their zig zag structure. - □ R-groups are ______ to the β-sheets. - •Unlike α-helices, H-bonded β-sheets can form between *separate* protein chains () or the *same* chain (). - \Box β -sheets typically only have 2 5 β strands but can have up to _____ or more β -strands. **EXAMPLE:** Interchain vs. Intrachain β pleated sheets. **PRACTICE:** Which of the following is true about interchain β-sheets? - a) Only have two β-strands. - b) Backbone H-bonding between same chain β-strands. - c) Backbone H-bonding between separate chain β-strands. - d) R-group H-bonding between separate chain β-strands. ## **Beta Sheet Bond Angles** • β -sheet ϕ and ψ angles are found in the _____-left of the Ramachandran plot. ## **EXAMPLE:** **PRACTICE:** Which set of φ and ψ bond angles is best for β -sheet secondary structure? - a) + Phi (ϕ) angles & Psi (ψ) angles. - c) + Phi (φ) angles & + Psi (ψ) angles. - b) Phi (ϕ) angles & + Psi (ψ) angles. d) Phi (ϕ) angles & Psi (ψ) angles.