CONCEPT: BETA SHEET

- β -sheets: consist of ____ or more β -strands arranged side-by-side.
 - □ Also known as β-_____ sheets because of their zig zag structure.
 - □ R-groups are ______ to the β-sheets.
- •Unlike α-helices, H-bonded β-sheets can form between *separate* protein chains () or the *same* chain ().
 - \Box β -sheets typically only have 2 5 β strands but can have up to _____ or more β -strands.

EXAMPLE: Interchain vs. Intrachain β pleated sheets.

PRACTICE: Which of the following is true about interchain β-sheets?

- a) Only have two β-strands.
- b) Backbone H-bonding between same chain β-strands.
- c) Backbone H-bonding between separate chain β-strands.
- d) R-group H-bonding between separate chain β-strands.

Beta Sheet Bond Angles

• β -sheet ϕ and ψ angles are found in the _____-left of the Ramachandran plot.

EXAMPLE:

PRACTICE: Which set of φ and ψ bond angles is best for β -sheet secondary structure?

- a) + Phi (ϕ) angles & Psi (ψ) angles.
- c) + Phi (φ) angles & + Psi (ψ) angles.
- b) Phi (ϕ) angles & + Psi (ψ) angles. d) Phi (ϕ) angles & Psi (ψ) angles.