## **CONCEPT: DEGREE OF INHIBITION**

Question: How can we measure inhibitor effects on the initial rate/velocity (V<sub>0</sub>) of an enzyme-catalyzed-reaction?

of inhibition: a factor that measures/quantifies how much an enzyme is actually being inhibited by the inhibitor.

•Recall: inhibitors can either bind to the \_\_\_\_\_ enzyme to form EI-complex or to the \_\_\_\_-complex to form ESI-complex.

□ Biochemists can *separately* measure the *degree of inhibition* on the \_\_\_\_\_ enzyme & the \_\_\_\_\_-complex.

## <u>α Measures Effects of Inhibition on Free Enzyme (E)</u>

- ●Degree of Inhibition on \_\_\_\_\_ enzyme (\_\_\_) = 1 + [I]
  - $\square \alpha$  is a *unitless* factor that is \_\_\_\_\_ greater than or equal to 1 ( $\alpha \ge 1$ ).
  - $\square$  No inhibitor is present when  $\alpha$  = , AND as  $\alpha$  , [inhibitor] *increases*.





**EXAMPLE:** According to the data in the table below, which enzyme is affected most by the inhibitor?

- a) Enzyme A.
- b) Enzyme B.
- c) Enzyme C.

| · · · · · · · · · · · · · · · · · |                        |
|-----------------------------------|------------------------|
| Enzyme A                          | $\alpha$ = 1.37        |
| Enzyme B                          | $\alpha$ = <b>1.98</b> |
| Enzyme C                          | $\alpha$ = 1.02        |

**PRACTICE:** Calculate the degree of inhibition of an inhibitor on the free enzyme if the [I] = 3  $\mu$ M and the K<sub>I</sub> = 6  $\mu$ M.

- a)  $\alpha = 1.5$
- b)  $\alpha = 2$

- c)  $\alpha = 4$  d)  $\alpha = 3.5$  e)  $\alpha = 0.5$

## α' Measures Effects of Inhibition on ES-Complex

• Degree of Inhibition on \_\_\_\_\_-Complex (\_\_\_) quantifies effect of an inhibitor on the ES-complex (α').



Degree of Inhibition on \_\_\_\_-complex = \_\_\_ = 
$$\left(1 + \frac{[I]}{K'_I}\right)$$

 $\bullet \alpha$  and  $\alpha$ ' are used as factors to modify the Michaelis-Menten & Lineweaver-Burk equations in the presence of inhibitors.

## **CONCEPT:** DEGREE OF INHIBITION

**PRACTICE:** Calculate the degree of inhibition of an inhibitor on the ES-complex if the [I] = 8  $\mu$ M and the K'<sub>I</sub> = 0.03 mM.

a) 
$$\alpha = 0.87$$

c) 
$$\alpha = 1.27$$

e) 
$$\alpha = 0.27$$

b) 
$$\alpha = 1.08$$

d) 
$$\alpha = 2.39$$