CONCEPT: CONCERTED (MWC) MODEL

Concerted (MWC) Model:						
□ Rule: All allo						
□ A natural						
☐ Though S is not required to	induce T-R convers	sion, the T≕R €	equilibrium is _		by incre	easing [S].
Allosteric Enzyme			Concerted () Model		
Subunit 1 Subunit 2		!				
				=88		
Subunit 3 Subunit 4		All s	ubunits <i>always</i> ir	n sta	ate.	
Suburit 3 Suburit 4	Enzymo in	No sub	strate needed	l for T⇒R	conversion	-1
	Enzyme in T state	1		& ls allowed!		
	∞	i				
	Enzyme in	1.				
	free R state] ¦		8		
ositive Cooperativity of Concert		TD '''		D 0(/)		M
	ling of S disrupts the	•		R State to		V ₀ .
□ Accounts for the		-				
Recall: at low [S], equilibrium favo		·	•	f T Ot-	.t. t. th. D 01	-1-
□ Under cell conditions, the	-	•	-			
At high [S], it is likely the						
□ High [S] leads to <i>more</i> S	binding & the	OI Sui	ounits in the R	State (lowe	I L ₀ &	_ V ₀).
	(00)		V _{max}			
	Initial Reaction Rate (V					
		<u> </u>	of all <i>active sites</i>			
	Positive Cooperativ	occupi	ed with S .			
	lii liii					
oncerted (MWC) Model		strate Concentratio	:	J 	88 m	∞ &8
Enzyme in Enzyme in T state free R state			88 ⊞ ∞	⊞ ₩	⊗ □	8 ∞
Enzyme with Enzyme with				\mathbb{H}_{∞}	88 88 ⊞ ∞	⊞ 👷
8 8 m			: 📖	**************************************		88 ⊞
Enzyme with Enzyme with 3 \$ bound 4 \$ bound		forms form 101	A 1991	LL.	~ ~	han [0]

CONCEPT: CONCERTED (MWC) MODEL

PRACTICE: In the Concerted model for allosteric enzymes:

- a) Relative affinities of substrate for the T & R states play a crucial role in reaction cooperativity.
- b) Equilibrium between T and R states plays a minor role.
- c) Enzymatic activity of the T state is considerably higher than that of the R state.
- d) It is possible to describe the reactions of all allosteric enzymes accurately.

PRACTICE: Which of the following is true concerning the symmetry rule & the Concerted model of allosterism?

- a) The protein is an oligomer of symmetrically related proteins.
- b) Though not with the same affinity, the ligand can bind to a subunit in either conformation.
- c) The oligomer can only exist in one of two conformational states (T & R), which are in equilibrium.
- d) All the above are true.

PRACTICE: According to the Concerted model & symmetry rule for allosteric proteins, which of the following statements is true for hemoglobin?

- a) Each of the 4 subunits in hemoglobin changes one at a time from the low affinity to high affinity state.
- b) First hemoglobin's α -subunits, then β subunits change from the low to the high affinity state.
- c) Each of the four subunits in the hemoglobin tetramer is either in the low affinity or the high affinity state.
- d) Hemoglobin's α -subunits have a low affinity state while the β subunits have high affinity for oxygen.