PRACTICE: CITRIC ACID CYCLE | 6. The | conversion of one mole of acetyl-CoA to two moles of CO ₂ results in the production of: | |----------------------------|---| | | a. 1 mole of ATP b. 1 mole of FADH₂ c. 1 mole of NADH d. 2 moles of GTP e. 2 moles of citrate | | 7. The | reaction in the Citric Acid Cycle most similar to pyruvate dehydrogenase converts: | | | a. fumarate to malate b. isocitrate to α-ketoglutarate c. succinate to aconitate d. malate to oxaloacetate e. α-ketoglutarate to succinyl-CoA | | 8. The | reaction in the Citric Acid Cycle that produces a GTP converts: | | b.
c.
d. | citrate to isocitrate. malate to oxaloacetate. fumarate to malate. succinyl-CoA to succinate. succinate to fumarate. | | 9. Whi | ch Citric Acid Cycle intermediate is considered prochiral? | | b.
c.
d. | citrate isocitrate malate oxaloacetate succinate | | 10. The | e conversion of one mole of pyruvate to three moles of carbon dioxide by pyruvate dehydrogenase and Citric Acid
produces moles of NADH, moles of FADH ₂ , and moles of ATP (=GTP). | | b.
c.
d. | 2:2:2
3:3:1
3:2:0
4:1:1
4:2:1 | | 11. The | e glyoxylate cycle: | | a.
b.
c.
d.
e. | produces nucleic acids. uses acetyl-CoA for energy and synthesis of biosynthetic precursors. |