
CONCEPT: DRUGS & TOXINS AFFECTING GPCR SIGNALING

bacterial toxins target G-proteins & indirectly *increase* activity of the effector enzyme (*adenylate cyclase*).
1) ______ *Toxin*: inhibits GTPase activity of G_s (*stimulating* G protein α subunit), causing *cholera*.
□ Permanently _____ G protein α subunit & thus *overstimulates* adenylate cyclase activity.
2) ______ *Toxin*: inhibits GDP-GTP exchange in G_i (*inhibiting* G protein α subunit), causing *whooping cough*.
□ Permanently _____ G_i protein α subunit (preventing adenylate cyclase *inhibition*).

Pedal to the Metal

Broken Brakes

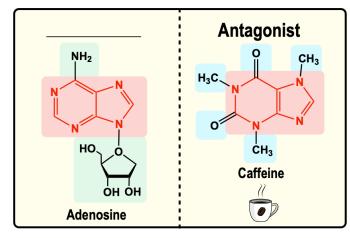
EXAMPLE: Cholera toxin blocks GTP hydrolysis of the stimulating G_s protein α subunit, whereas pertussis toxin prevents the interaction of the inhibiting G_i protein α subunit with adenylate cyclase. What is the effect of these toxins on the intracellular concentration of cAMP?

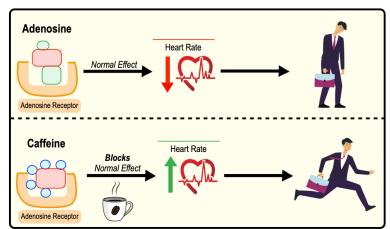
- a) Cholera toxin increases cAMP concentration, while pertussis toxin decreases cAMP concentration.
- b) Cholera toxin decreases cAMP concentration, while pertussis toxin decreases cAMP concentration.
- c) They both would lead to an increase in cAMP concentration.
- d) They both would lead to a decrease in cAMP concentration.

PRACTICE: Cholera toxin increases the cellular cAMP levels by:

- a) Binding to and activating GPCRs.
- b) Altering the activity of stimulatory G_s proteins.
- c) Inhibiting phosphodiesterase activity.
- d) Binding to and inhibiting adenylyl cyclase.
- e) Altering the activity of inhibitory G_i proteins.

CONCEPT: DRUGS & TOXINS AFFECTING GPCR SIGNALING


PRACTICE: Pertussis toxin is produced by *Bordetella pertussis*, the bacterium that causes whooping cough. Pertussis toxin catalyzes the addition of ADP-ribose to G_i which 'locks' it in the GDP-bound state. If the uninhibited, toxin free GPCR pathway normally results in decreased glycogen synthesis, then what would be the effect of pertussis toxin?


- a) It would decrease contraction.
- b) It would decrease glucose production.
- c) It would further decrease glycogen production.
- d) It would increase the rate of endocytosis.

Agonists vs. Antagonists

- •Many clinical drugs are developed to act either as _____ or ____-agonists to various receptors.
 - □ Agonist: structural analogs that bind receptors & _____ the effect of the original/natural ligand.
 - □ Antagonist: analogs that bind receptor without triggering normal effect & thus _____ effects of agonists/ligands.
 - □ Antagonists function similarly to ______ enzyme inhibitors (*blocking* the "active site").

EXAMPLE: Caffeine acts as an Antagonist to the Adenosine Receptor.

PRACTICE: Caffeine is a molecule that binds to ______ receptors, inhibiting their response.

- a) Tyrosine.
- c) Adenine.
- e) Asparagine.

- b) Adenosine.
- d) Cytosine.
- f) Dopamine.

PRACTICE: Caffeine is a(n) _____ of adenosine that blocks its receptors from activation.

- a) Inhibitor.
- b) Antagonist.
- c) Agonist.

d) Activator.