Summary of Immunity

Summary of immunity	
Organisms are continually subject to attack by pathogens that cause disease & need an	system for defense.
• general types of immunity: 1) immunity (1st line of defense) & 2) Adaptive	immunity (2nd line of defense)
Innate immunity: generalized, nonspecific immunity used against all pathogens (ex. specific immunity).	skin, mucous, etc.).
□ immunity: specific immunity with an adaptive & memory component (includes T cells & B cells).
•Adaptive immunity is further split into types: 1) immunity & 2) _	immunity.
□ Cellular immunity: primarily targets intracellular pathogens using cells.	
□ Humoral immunity: primarily targets extracellular pathogens using antibodies &	cells.
EXAMPLE: Immune system summary.	
Immune System	l attackcellular pathogens!
Innate (Non-specific) Immunity Adaptive (Specific) Immunity	
Line of DefenseLine of Defense	cellcell
Defends against pathogen types. Cellular Immunity Humoral Immunity	
Ex. Skin, Mucous, Stomach acid, etc. Defends the cell using cells. Defends the cell using cells.	lls & antibodies.
PRACTICE: Humoral immunity refers to the part of the immune response mediated by:	
a) T lymphocytes. c) The thymus. e) Antibodies.	
b) Antigens. d) The skin. f) C lymphocytes.	
Antibodies	
•(immunoglobulin or lg):shaped proteins that recognize & bind to an an	itigen's epitope.
□: any compound that provokes an immune response.	
□: the exact binding-site on an <i>antigen</i> that an antibody binds to.	
□ Antibodies have a strong affinity (K _d) to their epitope via an <i>induced-fit</i> .	
Antibodies: produced bycells (immunity) but are also isolated for biocher	nical techniques (ex. ELISA).
	1

Antibodies secreted by B-cell.

Antibody Structure

•Antibodies consist of polypeptide chains: two <i>identical</i> (L) chains & two identical (H) chain	ns
□ These 4 chains are <i>covalently</i> linked together via bonds.	
●Each light & heavy chain has a <i>variable</i> region (domain) and a <i>constant</i> region (domain).	
□ V domain: located at the tip (N-terminal) of each prong of the "Y" and contains the binding site) .
□ C domain: located at the hinge & stem of the "Y" and is recognized by system cells.	
□ If antibody is broken at the hinge of the "Y", it leaves the prongs () and the stem ().	

EXAMPLE: Antibody Structure:

PRACTICE: What is the subunit structure of IgG, one of the 5 classes of antibodies produced by our immune system?

a) 2 light chains and 2 heavy chains.

- c) 4 light chains, 4 heavy chains, and a J chain.
- b) 2 light chains, 2 heavy chains, and a J chain.
- d) 10 light chains, 6 heavy chains, and a J chain.

PRACTICE: Which of the following parts of an IgG molecule is not involved in binding to an antigen?

a) Fab.

- c) Variable region.
- b) Heavy chain.
- d) Fc.

Antibody Function

- •Antibodies have many functions including _____ toxins & ____ invading pathogens for destruction.
 - □ Phagocytes: cells that engulf & neutralize pathogens tagged by _____.

Mechanisms of Antigen Inactivation

Antibody Classes

•There are _____ classes of immunoglobulins based on differences in their *heavy* chains:

1) lg

2) lg____

3) lg____

4) lg____

5) lg____

EXAMPLE: Classes of Antibodies.

lg Class	Structure	Heavy Chain	Light Chain	Molecular Mass (kDa)	Primary Feature
Ig <mark>G</mark>		γ	κorλ	150	Protects against types of infections.
lg A	V	α	κorλ	180-720	Highly concentrated in membranes.
lg <mark>M</mark>	*	μ	κorλ	950	antibody produced upon infection.
lg <mark>E</mark>		ε	κ or λ	190	Defends against
lgD		δ	κorλ	160	B-cells.

PRACTICE: Immunoglobulin/antibody classes are distinguished by:

- a) The light chains they possess.
- c) Constant regions in their light chains.
 - e) None are true.
- b) Carbohydrates on their light chains. d) The heavy chains they possess.

Antibody Diversity

- ●Our immune system has *potential* to produce an _____ number of *different* antibodies (perhaps > 10₁8).
 - □ So many potential antibody possibilities that they all cannot be produced in one lifetime.
- Question: how is antibody diversity SO LARGE if humans only have ~25,000 genes?
 - □ Antibody diversity results from significant amounts of *gene* _______, *splicing*, & *mutations*.

EXAMPLE: Antibody diversity.

Monoclonal & Polyclonal Antibodies

- Antibodies are valuable reagents for biochemical assays, but first must be prepared and collected.
- □ _____ types of antibody preparations are used: 1) _____. & 2) _____.
- Monoclonal Antibodies: antibodies specific to the epitope on the same antigen.
 - ☐ Made by B cell _____ grown in cell culture in a lab.
- Polyclonal Antibodies: ______ of antibodies specific to _____ epitopes on the same antigen.
 - □ Made by ___ B cells.
 - □ Example of polyclonal antibody preparation: injecting one antigen into an entire animal.
 - ☐ Animal's B cell population produces *different* antibodies specific to *different* epitopes on the antigen.

EXAMPLE: Monoclonal vs. Polyclonal Antibodies.

PRACTICE: Which of the following mechanisms is not a way that antibody diversity is attained?

- a) Gene rearrangements.
- b) Apoptosis.
- c) Splicing.
- d) Mutations.

PRACTICE: What is the difference between monoclonal and polyclonal antibodies?

- a) Monoclonal antibodies consist of different immunoglobulins recognizing a single epitope on different antigens, whereas polyclonal antibodies consist of different immunoglobulins recognizing many epitopes on an antigen.
- b) Monoclonal antibodies are identical immunoglobulins recognizing a single epitope on different antigens, whereas polyclonal antibodies consist of many different immunoglobulins that recognize many epitopes on an antigen.
- c) Monoclonal antibodies consist of different immunoglobulins recognizing a single epitope on the same antigen, whereas polyclonal antibodies consist of identical immunoglobulins recognizing many epitopes on an antigen.
- d) Monoclonal antibodies are identical immunoglobulins recognizing a single epitope on the same antigen, whereas polyclonal antibodies consist of different immunoglobulins recognizing different epitopes on the same antigen.