

CONCEPT: MASS SPECTROMETRY

●Mass Spe	ectrometry (MS): ionizes, quantifies	s, & separates molecules based or	n theirto	ratio (<i>m/z</i>).
□ r	m/z: property used to	identify molecules & get structural	/chemical information.	
□ \$	Since z is almost always equal to _	, m/z is often considered to be	the	
●Mass spe	ectrometers typically operate in the	following order:		
1)	Purified peptide first converted to	a & in a	a vacuum.	
	□ Ionization occurs via contr	olled bombardment with	or a noble gas (ex. He	!).
	□ Leads to random	of most peptide molec	ules (usually breaks at peptid	e bonds).
2)	2) Ionized gas peptide fragments are exposed to an or magnetic field.			
	□ Electric field	the ionized gas fragments & the _	they take are a res	sult of their m/z.
	□ Fragments with	m/z ratios are deflected	than those with larger m/z ra	ıtios.
3)	A detector measures the relative	& m/z of each io	nized gas peptide fragment.	
EXAMPLE	: Mass Spectrometry			

PRACTICE: Considering the mass of each residue (shown below) and the fact that not every peptide bond will break in mass spectrometry of a protein, answer the following questions.

A) If cleavage between two Gly residues does not occur, which amino acid would be identified in place of the two glycines?

- a) Gly.
- c) Asp.
- b) Asn.
- d) Ser.

B) What amino acid would be identified if a bond between Ser and Val did not break?

- a) Trp.
- c) Thr.
- b) Tyr.
- d) Val.

Mass of Residue (g/mole)				
71.08				
156.18				
114.16				
115.08				
103.18				
129.08				
128.14				
57.08				
137.18				
113.18				
113.18				
128.18				
131.18				
147.18				
97.08				
87.08				
101.08				
186.16				
163.18				
99.08				