CONCEPT: GLYCOLYSIS

9. Enolase (ΔG° = 7.5 kJ/mol) 2-phosphoglycerate \rightarrow phosphoenolpyruvate (PEP) + H₂O

$$O = OH \bigcirc O$$

$$OH \bigcirc O$$

- 10. Pyruvate kinase (ΔG° = -31.4 kJ/mol) PEP + ADP \rightarrow pyruvate + ATP
 - □ Pyruvate comes out of the reaction in the enol form, but immediately converts to the keto form

- Reactions 1, 3, 10 are the major drivers of glycolysis because they have $-\Delta G$, and are very favorable
- Other molecules can feed into glycolysis, but it always costs 2 ATP
 - □ Glucose → glucose 6-phosphate
 - □ Lactose → glucose + galactose
 - \square Mannose \rightarrow mannose 6-phosphate \rightarrow fructose 6-phosphate
 - □ Fructose \rightarrow fructose 1-phosphate \rightarrow glyceraldehyde + DHAP \rightarrow G3P

- Glycerol → glycerol 3-phosphate → DHAP → G3P
 - □ Uses 1 ATP, and generates 2 ATP, but it also generates 2 NADH
 - □ Generates excess NADH for glycolysis to be sustained with fermentation, can only be used in aerobic conditions
- Glycogen phosphorylase breaks down glycogen to be used as glucose by the cell
 - □ Glycogen → glucose 1-phosphate → glucose 6-phosphate

