CONCEPT: ANOMER ## Monosaccharide Cyclization Generates α and β Anomers - : cyclic sugars that differ ONLY in configurations of their carbon. - □ Anomeric carbon: only ring carbon attached to _____ oxygens (used to be carbonyl carbon before cyclization). - •When a monosaccharide cyclizes, the anomeric carbon becomes a chirality center with _____ possible configurations: - 1) _____ Anomer: anomeric carbon's -OH is on the opposite side of its highest numbered carbon. - 2) ____ Anomer: anomeric carbon's -OH is on the ____ side of its highest numbered carbon. **EXAMPLE:** Which of the following molecules are anomers? - a) Molecules 1 and 2. - b) Molecules 2 and 5. - c) Molecules 1 and 5. - d) Molecules 3 and 4. - e) Molecules 1 and 4. **PRACTICE:** The ___/__ of the chiral carbon furthest from the carbonyl group, while the ___/__ anomers are determined by _____ of the anomeric carbon. - a) D; L; conformations; R; S; configuration. - d) D; L; configuration; α ; β ; configuration. - b) R; S; conformation; α ; β ; configuration. - e) D; L; conformation; α ; β ; conformation. - c) D; L; configuration; α ; β ; conformation. ## **CONCEPT: ANOMER** **PRACTICE:** Circle the α and β anomers for the following D-monosaccharide: **PRACTICE**: Answer the following questions regarding the following cyclic monosaccharide shown below: A) Clearly label the hemiacetal carbon. - B) The monosaccharide is a(n) _____ anomer. - a) Alpha (α). - b) Beta (β). - C) Draw the opposite anomer. D) Draw the α stereoisomer that differs in the arrangement of substituents at C2.