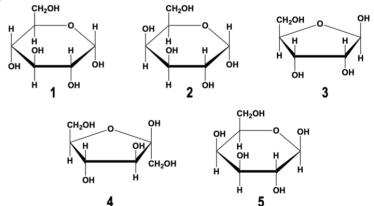
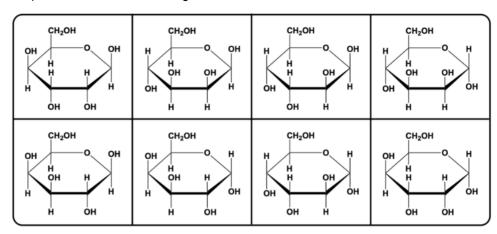

CONCEPT: ANOMER


Monosaccharide Cyclization Generates α and β Anomers

- : cyclic sugars that differ ONLY in configurations of their carbon.
 - □ Anomeric carbon: only ring carbon attached to _____ oxygens (used to be carbonyl carbon before cyclization).
- •When a monosaccharide cyclizes, the anomeric carbon becomes a chirality center with _____ possible configurations:
 - 1) _____ Anomer: anomeric carbon's -OH is on the opposite side of its highest numbered carbon.
 - 2) ____ Anomer: anomeric carbon's -OH is on the ____ side of its highest numbered carbon.

EXAMPLE: Which of the following molecules are anomers?

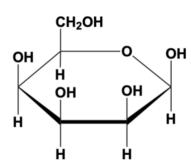
- a) Molecules 1 and 2.
- b) Molecules 2 and 5.
- c) Molecules 1 and 5.
- d) Molecules 3 and 4.
- e) Molecules 1 and 4.



PRACTICE: The ___/__ of the chiral carbon furthest from the carbonyl group, while the ___/__ anomers are determined by _____ of the anomeric carbon.

- a) D; L; conformations; R; S; configuration.
- d) D; L; configuration; α ; β ; configuration.
- b) R; S; conformation; α ; β ; configuration.
- e) D; L; conformation; α ; β ; conformation.
- c) D; L; configuration; α ; β ; conformation.

CONCEPT: ANOMER


PRACTICE: Circle the α and β anomers for the following D-monosaccharide:

PRACTICE: Answer the following questions regarding the following cyclic monosaccharide shown below:

A) Clearly label the hemiacetal carbon.

- B) The monosaccharide is a(n) _____ anomer.
 - a) Alpha (α).
 - b) Beta (β).
- C) Draw the opposite anomer.

D) Draw the α stereoisomer that differs in the arrangement of substituents at C2.