CONCEPT: COMMON MONOSACCHARIDES

•Some of the most common aldose and ketose monosaccharides in nature are shown below:

CONCEPT: COMMON MONOSACCHARIDES

Monosaccharide Structures Worth Memorizing

•The monosaccharide structures worth memorizing will vary from course to course, but here are a few common ones!

Cyclic Forms of Monosaccharides

•We can use the *linear* forms of sugars to derive their _____ forms:

 \square β -D-**Gluco**pyranose.

 $\ \square \ \alpha$ -D-**Galacto**pyranose.

 \square α -D-**Fructo**furanose.

PRACTICE: Which of the following pairs of sugars are epimers of each other?

- a) D-fructose and L-fructose.
- c) D-ribose and D-deoxyribose.
- b) D-mannose and D-glucose.
- d) D-galactose and D-fructose.

CONCEPT: COMMON MONOSACCHARIDES

PRACTICE: The sugar α -D-Mannose is a sweet-tasting sugar. β -D-Mannose, on the other hand, tastes bitter. A pure solution of α -D-mannose loses its sweet taste with time as it is converted into the β anomer. Draw the β anomer:

PRACTICE: Draw the α -furanose and β -pyranose forms of D-ribose.

PRACTICE: Indicate if the following pairs of sugars are enantiomers, anomers, epimers, or an aldose-ketose pair:

- a) α-D-galactopyranose and β-D-galactopyranose.
- b) D-glucose and D-mannose.
- c) D-glucose and D-fructose. _____
- d) α-D-glucopyranose and β-D-glucopyranose.
- e) D-galactose and D-glucose. _____
- f) α -D-mannopyranose and α -L-mannopyranose.