CONCEPT: INDIRECT PROTEIN SEQUENCING VIA GENOMIC ANALYSES | protein seque | encing (via Tandem MS | or Edman degradation), is used | d on <i>already</i> extracted/isolated proteins. | | |----------------------------------|-----------------------|--------------------------------|--|--| | □ Directly identifie | es sequence of | proteins in a sample; HO\ | WEVER | | Most protein sequencing data is derived indirectly from _____ analyses (translating nucleotide sequences of genes). ### Why Obtain Protein Sequences via Genomic Analyses? - •It saves a lot of time! Working with DNA is easier than working with proteins. - □ DNA sequencing is significantly _____, cheaper & more efficient/informative than direct protein sequencing. - □ Allows us to collect more protein sequencing data faster! # So Why Do We Even Need Direct Protein Sequencing? - •We can't just scrap direct protein sequencing because it has its own advantages! - □ Genomic analyses cannot identify an unknown protein sample on its own. - □ Unlike genomic analyses, Tandem MS can reveal chemically _____ residues (ex. lipoproteins, etc.). ### **Genetic Code** •Recall: _____ code reveals the connection between codons of nucleic acids & amino acids of proteins. **EXAMPLE:** Use the Genetic Code to reveal the peptide sequence. | | | Base of Codon | | | | | | | | |---------------------|---|---------------------------------|--------------------------|----------------------------------|--------------------------------|------|------------------|--|--| | | | U | С | Α | G | | | | | | First Base of Codon | U | UUU } Phe
UUA } Leu
UUG } | UCU
UCC
UCA
UCG | UAU Tyr
UAC Stop
UAG Stop | UGU Cys
UGC Stop
UGG Trp | UCAG | T _h i | | | | | С | CUU
CUC
CUA
CUG | CCU
CCC
CCA
CCG | CAU His
CAC GIn
CAG GIn | CGU
CGC
CGA
CGG | DOAG | hird Base | | | | | A | AUU AUC AUA Met | ACU
ACC
ACA
ACG | AAU }Asn
AAA }Lys
AAG }Lys | AGU Ser
AGC AGA Arg | UCAG | of Codon | | | | | G | GUU
GUC
GUA
GUG | GCU
GCC
GCA
GCG | GAU Asp
GAC GAA
GAG Glu | GGU
GGC
GGA
GGG | UCAG | on | | | | | | 202-200 | | | | | 1 | | | *Amino Acid Sequence of Peptide Revealed via Genomic Analysis* **PRACTICE:** Use the genetic code above & the coding DNA sequence below to determine the protein sequence. 5'-ATGGCCTGCGTTCTCAAG-3' ## **CONCEPT: INDIRECT PROTEIN SEQUENCING VIA GENOMIC ANALYSES** PRACTICE: Suppose the sequence below is a template DNA sequence. What is the corresponding protein sequence? 5'-ATGGCCTGCGTTCTCAAG-3' **PRACTICE:** Even when the sequence of nucleotides for a gene is available and genomic analyses can be performed, direct chemical techniques on the physical protein are still required to determine: - a) The molecular weight of a simple protein. - b) The N-terminal amino acid residue. - c) The total number of amino acid residues in the protein. - d) The location of disulfide bonds.