CONCEPT: INDIRECT PROTEIN SEQUENCING VIA GENOMIC ANALYSES

 protein seque	encing (via Tandem MS	or Edman degradation), is used	d on <i>already</i> extracted/isolated proteins.	
□ Directly identifie	es sequence of	proteins in a sample; HO\	WEVER	

Most protein sequencing data is derived indirectly from _____ analyses (translating nucleotide sequences of genes).

Why Obtain Protein Sequences via Genomic Analyses?

- •It saves a lot of time! Working with DNA is easier than working with proteins.
 - □ DNA sequencing is significantly _____, cheaper & more efficient/informative than direct protein sequencing.
 - □ Allows us to collect more protein sequencing data faster!

So Why Do We Even Need Direct Protein Sequencing?

- •We can't just scrap direct protein sequencing because it has its own advantages!
 - □ Genomic analyses cannot identify an unknown protein sample on its own.
 - □ Unlike genomic analyses, Tandem MS can reveal chemically _____ residues (ex. lipoproteins, etc.).

Genetic Code

•Recall: _____ code reveals the connection between codons of nucleic acids & amino acids of proteins.

EXAMPLE: Use the Genetic Code to reveal the peptide sequence.

		Base of Codon							
		U	С	Α	G				
First Base of Codon	U	UUU } Phe UUA } Leu UUG }	UCU UCC UCA UCG	UAU Tyr UAC Stop UAG Stop	UGU Cys UGC Stop UGG Trp	UCAG	T _h i		
	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAC GIn CAG GIn	CGU CGC CGA CGG	DOAG	hird Base		
	A	AUU AUC AUA Met	ACU ACC ACA ACG	AAU }Asn AAA }Lys AAG }Lys	AGU Ser AGC AGA Arg	UCAG	of Codon		
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC GAA GAG Glu	GGU GGC GGA GGG	UCAG	on		
		202-200					1		

Amino Acid Sequence of Peptide Revealed via Genomic Analysis

PRACTICE: Use the genetic code above & the coding DNA sequence below to determine the protein sequence.

5'-ATGGCCTGCGTTCTCAAG-3'

CONCEPT: INDIRECT PROTEIN SEQUENCING VIA GENOMIC ANALYSES

PRACTICE: Suppose the sequence below is a template DNA sequence. What is the corresponding protein sequence?

5'-ATGGCCTGCGTTCTCAAG-3'

PRACTICE: Even when the sequence of nucleotides for a gene is available and genomic analyses can be performed, direct chemical techniques on the physical protein are still required to determine:

- a) The molecular weight of a simple protein.
- b) The N-terminal amino acid residue.
- c) The total number of amino acid residues in the protein.
- d) The location of disulfide bonds.