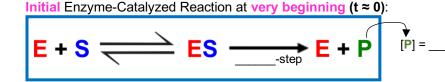

CONCEPT: RATE CONSTANTS & RATE	LAW
,	

- Rate Constant (k): a ______ positive value indicating reaction rate efficiency/probability under set conditions.
 - \Box The *higher* the k, the ______ likely the reaction is _____; No reaction occurs if k = 0, & k is never negative.
- •There are _____ rate constants for a standard enzyme-catalyzed reaction.
 - 1) k_1 : E + S association rate constant to form ES.
 - 3) k_2 : ES dissociation rate constant to form P.

 - 2) k_{-1} : ES dissociation rate constant back to E + S. 4) k_{-2} : E + P association rate constant to reform ES.


Enzyme-Catalyzed Reaction at **any** given time:

- At initial stages of an enzyme-catalyzed reaction, there are only _____ rate constants (no product means ____ is ignored).
 - velocity (V_0): velocity at the very beginning of a reaction where k_{-2} is negligible.

PRACTICE: Which of the following rate constants is negligible for the initial velocity (V_0) of an enzyme-catalyzed reaction?

- a) k_1 .
- b) k_{-1} .
- c) k2.
- d) k_{-2} .

Rate Law: Calculating Reaction Rate (v) with Rate Constant (k)

- •If final concentrations of reactants/products are unknown, reaction rate (v) can be determined by the _____ law.
 - □ Rate Law: mathematical relationship between reaction rate (v), rate constant (k), & each ______ [reactant].
 - □ Multiply rate constant (k) by all initial [reactant]—

EXAMPLE: Rate Law.

• Reaction order must be experimentally determined but frequently equals the ______ of the reactant.

EXAMPLE: Determine the rate law for each *simple* reaction.

$$A + B \longrightarrow C + D$$

CONCEPT: RATE CONSTANTS & RATE LAW

PRACTICE: Calculate the reaction rate for the following simple reaction if $k = 1.3 \times 10^{-1} \,\text{M}^{-1}\text{s}^{-1}$, initial [A] = $4.0 \times 10^{-3} \,\text{M}$, and the initial [B] = $6.0 \times 10^{-3} \,\text{M}$ (for simple reactions, assume coefficients are reaction orders): $\mathbf{A} + \mathbf{B} \rightarrow \mathbf{2C}$

a) 2.13 x 10⁻⁶ M.

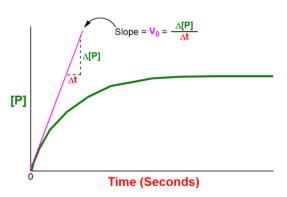
c) 1.32 x 10⁻⁶ s.

b) 3.12 x 10⁻⁶ M/s.

d) 3.12 x 10⁻⁶ M⁻¹s⁻¹.

Rate Laws for Enzyme-Catalyzed Reactions

• Recall: $\frac{\text{Reaction}}{\text{Velocity or Rate}} = \frac{\Delta [\text{Product}]}{\Delta \text{Time}}$, but v can be rewritten with the rate law.


• For an enzyme-catalyzed reaction, formation of the **product** depends only on _____ (k_1 and k_{-1} alone do not affect [P]).

□ Biochemists measure/plot the initial velocity (____) of this **product**-formation step.

EXAMPLE: Write the rate-law for the product-formation step.

$$E + S \xrightarrow{K_1} ES \xrightarrow{K_2} E + P$$

P Formation Rate Law: V₀ = ()

PRACTICE: Write out the rate law equations for each association/dissociation indicated below.

$$E + S \xrightarrow{K_1} ES \xrightarrow{K_2} E + P$$

a) Rate law for ES dissociation into E + P: V = _____

b) Rate law for E + S association: V = _____

c) Rate law for ES dissociation back into E + S: V = _____

PRACTICE: In a typical enzyme-catalyzed reaction, when & why is the rate constant k-2 negligible?

- a) At the very beginning of a reaction because the [S] & [P] are at equilibrium and not yet disturbed by the enzyme.
- b) Initially towards the beginning of a reaction because enzymes are getting off to a slow start.
- c) At the start of a reaction when [S] are at their highest, [P] are at their lowest, & the reverse reaction is unlikely.
- d) At the end of a reaction when the substrate and product are at equilibrium with each other.
- e) As soon as the reaction begins when the reaction rate is at its lowest.