CONCEPT: THERMODYNAMICS OF MEMBRANE DIFFUSION: CHARGED ION When ______ diffuse across a membrane, the transmembrane potential/voltage (_____) must be considered. \Box Recall: *Transmembrane Potential/Voltage* ($\Delta\Psi$): the difference in *electrical* _____ across the membrane. • $\Delta G_{\text{transport}}$ of ions due to *only* the transmembrane potential (gradient) alone is given as: $\Delta G_{\text{transport}} = zF\Delta\Psi$. □ : net charge of the diffusing ion. □ _____ (Faraday constant): charge of 1 mole of electrons = 96,485 JV⁻¹/mole (Coulombs/mole). HOWEVER, recall: ion diffusion depends on ___ gradient (combination of chemical & electrical gradients). **EXAMPLE:** ΔG_{transport} for Membrane Diffusion of Charged Ions. R = 8.315 J/mol*K T = Degrees Kelvin (K) ion Initial Side Final Side **Chemical Gradient Gradient EXAMPLE**: Calculate the energy cost ($\Delta G_{transport}$) of pumping Ca²⁺ from the cytosol to the extracellular space if the temperature is 37°C, $\Delta \Psi = 0.05 \text{ V}$ (inside negative), cytosolic [Ca²⁺] = 1.0 x 10⁻⁷ M, & extracellular [Ca²⁺] = 1.0 x 10⁻³ M. Uncharged. Charged (+/**–**): ₋ **STEP 1:** Determine *net charge* of diffusing molecule: **STEP 2:** Determine *direction* of diffusion (establish *initial* & *final* sides). Determine *sign* of $\Delta\Psi$ (+ or –). Draw a sketch.

STEP 3: Check *units* on all numbers & if necessary, *convert* units to ensure *compatibility*. (Ex. Temp. = Kelvin; $\Delta\Psi$ = Volts).

STEP 4: *Plug in* all given values (with appropriate units) into the correct equation & algebraically solve for missing variable.

CONCEPT: THERMODYNAMICS OF MEMBRANE DIFFUSION: CHARGED ION

PRACTICE: Calculate the free energy change ($\Delta G_{transport}$) for the movement of Na⁺ into a cell when its concentration outside is 150 mM and its cytosolic concentration is 10 mM. Assume that T = 20°C and $\Delta \Psi$ = -50 mV (inside negative).

- a) -1.7 KJ/mol.
- b) -11.4 KJ/mol.
- c) -11,600 KJ/mol.
- d) 11.4 KJ/mol.
- e) 14.3 KJ/mol.

PRACTICE: Calculate the $\Delta G_{transport}$ required to move 1 mole of Na⁺ ions from inside the cell ([Na⁺] inside = 5 mM) to the outside of the cell ([Na⁺] outside = 150 mM) when $\Delta \Psi$ = -70 mV (inside negative) & the temperature is 37°C.

- a) -15.5 KJ/mol.
- b) 2.0 KJ/mol
- c) 15.5 KJ/mol.
- d) -2.0 KJ/mol.

PRACTICE: Calculate the $\Delta G_{transport}$ when Ca^{2+} ions move from the endoplasmic reticulum ([Ca²⁺] = 1 mM) to the cytoplasm ([Ca²⁺] = 0.1 μ M). Assume that $\Delta \Psi$ = 0 and T = 25°C.

- a) 23 KJ/mol.
- b) -23 KJ/mol.
- c) -17 KJ/mol.
- d) 17 KJ/mol.