4 4				41		•
14.	Muscle	contraction	involves	the	conversion	OT:

- a. chemical energy to kinetic energy
- b. potential energy to chemical energy
- c. potential energy to kinetic energy
- d. kinetic energy to chemical energy
- e. chemical energy to potential energy

15. Biological oxidation-reduction reactions always involve:

- a. participation of oxygen
- b. formation of water
- c. mitochondria
- d. transfer of hydrogens
- e. transfer of electrons
- 16. The standard reduction potentials (E'°) for the following half reactions are:

Fumarate +
$$2H^+$$
 + $2e^ \rightarrow$ succinate E'° = +0.031 v
FAD + $2H^+$ + $2e^ \rightarrow$ FADH₂ E'° = -0.219 v

If you mixed succinate, fumarate, FAD, and FADH₂ together, all at 1M concentrations at pH 7.0 and in the presence of succinate dehydrogenase, which of the following will happen initially?

- a. fumarate and succinate would become oxidized and FAD and FADH2 would become reduced
- b. fumarate would become reduced and FADH2 would become oxidized
- c. no reaction, all reactants and products are already standardized
- d. succinate would become oxidized; FAD would become reduced
- e. succinate would become reduced, FADH2 would be unchanged because it is a cofactor
- 17. The hydrolysis of phosphoenolpyruvate has a ΔG'° of about -62 kJ/mole. The greatest contributing factor to this reaction is:
 - a. electrostatic attraction
 - b. ionization
 - c. polarization
 - d. tautomerization
 - e. dynamite
- 18. The reverse reaction of phosphoglucoisomerase has a K'_{eq} of 1.97.
- a. What is the ΔG° for the reverse reaction, use 2.5 kJ/mol for RT.

b. If the cellular concentration of the substrate of this reverse reaction is 1.2 mM and the product 0.6 mM, what is the ΔG of the reverse reaction.