CONCEPT: TITRATION

1) Understanding Titrations

- *Titration*: lab technique that measures pH changes of acid/base solutions & determines _____ values & [weak acids].
 - □ Solution of _____ concentration (*titrant*) is gradually added to a solution of *unknown* concentration (*analyte*).
 - □ Titrant continuously added to analyte until ______ is reached (indicated by color change).
- •Titration: used to determine: 1) concentration of acid/base in a solution.
 - 2) pK_a of a weak acid.
- Titration curve: plot of titration data with _____ pH on the y-axis & amount of ____ added on the x-axis.
 - □ Equivalence point (or endpoint): When moles of analyte present _____ moles of titrant added.

EXAMPLE: Titration of a Strong Acid with a Strong Base.

PRACTICE: Which of the following titration curves expresses the titration of a weak acid with a strong base?

2) Titration of Weak Acids

- •Inflection point (or midpoint): when _____ of the acid is neutralized the pH = pK_a of a weak acid.
 - \Box Recall: When pH = pK_a, the [conjugate base] = [conjugate acid].
- Equivalence point does not always equal pH = 7 (it depends on [H+] when a molar equivalent of titrant is added).

EXAMPLE: Titration of a Weak Acid with a Strong Base.

Inflection Point		=*For weak acids only.
Equivalence Point	Endpoint	[Analyte] = [Titrant]

CONCEPT: TITRATION

PRACTICE: You have an analyte solution of 50 mL of 0.2 M acetic acid (pK_a = 4.8). What volume of 0.05 M NaOH titrant needs to be added to get the final pH = pK_a?

- a) 20 mL
- b) 50 mL
- c) 100 mL
- d) 150 mL

3) Titration of Polyprotic Weak Acids

- •Some acids are _____ (multiple acidic hydrogens) & have a pK_a value for each acidic hydrogen.
- •The titration curves for polyprotic acids have _____ inflection & equivalence points (a set for each acidic H).
 - □ Each inflection point indicates a _____ value of a different acidic hydrogen.
- The Henderson-Hasselbalch equation is helpful to consider during a titration.

EXAMPLE:

If pH = 2.2: [] = [

]=[]

If pH = 7.2: [] = []

PRACTICE: Use the titration curve above. What is the predominate species in the solution of phosphoric acid at pH = 5?

- a) H₃PO₄
- b) H₂PO₄-
- c) HPO₄-2
- d) PO₄-3

PRACTICE: Titration confirms an acetic acid solution to be 0.1 M. Calculate the pH. (acetic acid K_a = 1.76 x 10⁻⁵ M).

- a) 2.1
- b) 3.6
- c) 2.9
- d) 8.3