CONCEPT: ZYMOGENS

_____ (or proenzymes): _____ enzyme precursors that can be converted to active enzymes

□ Activation of a zymogen usually occurs via cleavage of ______bonds.

□ Recall: *Proteolytic* _____ is a type of *post-translational-modification*.

□ Zymogens usually begin with " " or end in "-ogen."

Site of Synthesis	Zymogen (Inactive)	Active Enzyme
Stomach	Pepsinogen	Pepsin
Pancreas	Chymotrypsinogen	Chymotrypsin
Pancreas	Trypsinogen	Trypsin
Pancreas	Procarboxypeptidase	Carboxypeptidase
Pancreas	Proelastase	Elastase

PRACTICE: The active enzyme pepsin is produced in the stomach lining initially as a ______, which requires for activation in the stomach.

- a) Kinase; phosphorylation.
- b) Zymogen; reversible proteolytic cleavage of covalent bonds.
- c) Proprotein; reversible proteolytic cleavage.
- d) Phosphatase; ubiquitination.
- e) Proenzyme; irreversible proteolytic cleavage.

Zymogens of Trypsin & Chymotrypsin

•Both ______ & chymotrypsin are digestive enzymes with classic examples of zymogens.

- •It's critical for cells to store these hydrolytic enzymes as *inactive zymogens* because otherwise they could _____ the cell.
 - □ Storing enzymes as zymogens is a form of ______ enzyme activity.

CONCEPT: ZYMOGENS

PRACTICE: How is chymotrypsinogen converted to chymotrypsin?

- a) A protein kinase-catalyzed phosphorylation converts chymotrypsinogen to chymotrypsin.
- b) An increase in [Ca²⁺] promotes the conversion.
- c) Proteolysis of chymotrypsinogen forms chymotrypsin.
- d) Two inactive chymotrypsinogen dimers pair to form an active chymotrypsin tetramer.

PRACTICE: Why are most digestive enzymes produced as zymogens?

- a) To prevent digestion of cellular enzymes that would destroy the cell.
- b) So that the inactive enzyme can be transported in the bloodstream.
- c) Because the zymogen has a higher affinity for its substrate.
- d) Because the zymogen can't be post-translationally modified.

PRACTICE: Which of the following is a zymogen that can be converted to a peptidase that hydrolyzes peptide bonds adjacent to lysine and arginine?

a) Chymotrypsin.

c) Pepsinogen.

e) Trypsinogen.

b) Pepsin.

d) Trypsin.

f) Proelastase.