CONCEPT: MICHAELIS MENTEN ASSUMPTIONS - ●Leonor ______ & Maud _____ proposed a fundamental model to explain enzyme kinetics in 1913. - □ Proposed that it is necessary for an _____-complex to form during an enzyme-catalyzed reaction. - □ Canadian law did not give women the right to vote & language indicated only a man could be a "person." - □ The Michaelis-Menten enzyme kinetics model/equation only works under a few simple _____ ## 3 Michaelis-Menten Assumptions •The Michaelis-Menten Equation is only derived under the following ____ assumptions: [S] Assumption: (assume [S]_T \approx [S]): since [S] >>> [E]_T, the [____] is negligible in comparison to [S]. V_0 Assumption: only V_0 is measured since _____ reaction from ES \leftarrow E + P (k_{-2}) is _____ early on. Steady-State Assumption: the [ES] remains _____, meaning that $V_1 = V_{-1} + V_2$. **EXAMPLE:** Assumptions for Michaelis-Menten Kinetics. PRACTICE: Which of the following options is not an assumption made in deriving the Michaelis-Menten equation? a) The value of k_{-2} can be ignored. - c) The [E] is smaller than the [S]. - b) The rate of ES formation = to rate of P formation. - d) a, b & c are all correct assumptions. **PRACTICE:** Michaelis & Menten assumed that the initial reaction for an enzyme catalyzed reaction could be written as shown: $E + S \xrightarrow{\kappa_1} ES \xrightarrow{\kappa_2} E + P$. Using this, the rate/velocity of ES-complex breakdown can be expressed by: - a) k_1 ([E]_T [ES]). - c) k_2 [ES]. - b) k_1 ([E]_T [ES])[S]. - d) k_{-1} [ES] + k_2 [ES].