CONCEPT: OXIDATIVE PHOSPHORYLATION

- Proton motive force due to the electrochemical gradient of H⁺, drives ATP synthase to synthesize ADP + P_i → ATP
- Adenine nucleotide translocase antiporter that moves ATP out, and ADP in, to the mitochondria
- Phosphate translocase phosphate symporter that uses the proton motive force

- F₁ experiences conformational changes due to the rotation of F₀, and the ß subunits can be found in three positions
 - $\hfill\Box$ Open – ATP is released, and ADP + P_i can enter
 - □ Loose ADP + P_i are loosely bound
 - □ Tight ATP is bound tightly
- Protons enter a channel in F0 and move through it, displacing F₀ and causing F₁ to undergo conformational changes

• Oxidative phosphorylation – metabolic pathway by which mitochondria form ATP using energy from oxidation of nutrients