- Phosphoinositide (or Inositol-Phospholipid) Signaling Pathway (______): another classic example of a GPCR signaling.
 - □ Mediates a ______ of hormonal effects (ex. epinephrine, angiotensin, vasopressin).
 - ☐ Many functions including blood platelet & injured-cell signaling to stimulate growth & injury-repair process.
- Phosphoinositide signaling requires these components:

3 Phosphoinositide Secondary Messengers

•PSP generally involves production of ______ secondary messengers:

1) Inositol-1,4,5-*tri***p**hosphate (IP__). 2) 1-2-**dia**cyl**g**lycerol (____).

3) Calcium Ions (Ca²⁺).

EXAMPLE: Phosphoinositide Secondary Messengers:

PRACTICE: Which of the following are secondary messengers produced in the PSP pathway?

- a) cGMP & K+.
- b) IP₂ & IP₃.
- c) IP₃ & DAG.
- d) DAG & cAMP.

Many variations of Phosphoinositide Signaling Pathways (PSP), but can be condensed into ______ general steps:

<u>α-Adrenergic Pathway</u>

PSP Pathway

- 4 The activated/GTP-bound α-subunit binds & activates the effector enzyme (phospholipase C, _____).

 5 Activated PLC hydrolyzes its substrate, phosphatidylinositol-4,5-bisphosphate (_____).

 □ Active PLC generates two ______ messengers (_____ & ___).

 New

 6 IP₃ diffuses in cytoplasm to endoplasmic reticulum to bind/open ______ transport channels, ____ cytosolic [Ca²+].

 □ Ca²+ Activates ➤ Calmodulin (_____) Activates ➤ cytosolic protein kinases → Cell Response.

 7 DAG diffuses in membrane &, along with released Ca²+, activates a membrane-bound protein kinase C (_____).
- Epinephrine Outside Cell α-Adrenergic (Active) **GPCR** Cytosol (Active) GDP Cell Response Protein Calmodulin Kinase GTP hydrolysis Membrane Endoplasmic Reticulum
- Same as Before α subunit slowly _____ itself (& PLC) by hydrolyzing its GTP: \rightarrow GDP. α subunit assembles its original, inactive form & ligand dissociates from GPCR to _____ pathway.

How to Remember Phosphoinositide GPCR Signaling?

Story: Cell wants to save the day (**Cell Response**) from the villain "**Pip**" and his **2** weapons (**PIP**₂).

- 1 Lightining strike provides a warning of danger (Ligand binding).
- **2** Alpha-hero (G protein α -subunit) exchanges empty siren battery with full siren battery (GTP exchange).
- 3 Alpha-hero alarms $P_0L_iC_e$ but forgets β-blaster & γ -gadget (G protein α -subunit dissociation to $P_{hospho}L_{ipase}$ C).
- 4 Alpha-hero tells PoLiCe to target PIP's 2 weapons (PIP2) (PhosphoLipase C activation).
- 5 PoLiCe tasers PIPs 2 weapons, separating them into DAGger & 3 Ice Picks (DAG & IP3 production).
- 6 3 Ice Picks drop to release Captain Marvelous to help save the day (Ca2+ release, CaM activation & Cell Response).
- **7** DAG_{ger} flips toward a PacKed Crowd (PKC), who catch it & help save the day (PKC activation & Cell Response).

EXAMI	PLE: Place the following steps of the PSP si	gnaling pa	athway in order from	1-7:
a)	Conformational shift of the G-protein and G_{α} exchanges GDP for GTP			
b)	Activation of Phospholipase C			
c)	DAG and Ca ²⁺ ions activate Protein Kinase C			
d)	Ligand binds to the GPCR			
e)	G_{α} dissociates from $G_{\beta\gamma}$			
f)	IP ₃ diffuses to the ER membrane to release Ca ²⁺ into the cytoplasm			
g)	Phospholipase C hydrolyzes PIP ₂ into IP ₃ and DAG			
PRACT	FICE: When epinephrine binds to a(n)		receptor,	is activated, causing an increase in the
cellular	concentration of			
a)	Beta ; $G_{\alpha i}$; Inositol triphosphate.	d)	Alpha ; $G_{\alpha s}$; cAMP.	
b)	Alpha ; $G_{\alpha q}$; Inositol triphosphate.	e)	Beta ; $G_{\alpha q}$; Diacylg	lycerol & Inositol triphosphate.
c)	Beta ; $G_{\alpha i}$; Diacylglycerol.			
PRACT	FICE: Which of the following secondary mes	sengers, v	when released by pho	ospholipase C will directly activate PKC?
a)	Inositol triphosphate.	c)	Diacylglycerol.	
b)	Phosphatidylinositol bisphosphate.	d)	cGMP.	
PRAC	FICE: , when formed by phospho	lipase C, t	riggers the release o	f calcium from the endoplasmic reticulum?
a)	Inositol triphosphate.	c)	Diacylglycerol.	
b)	Phosphatidylinositol bisphosphate.	d)	cGMP.	

PRACTICE: In cells, epinephrine binding to the α -adrenergic receptor activates $G_{\alpha q}$. All of the following happen EXCEPT:

- a) Protein Kinase C activity will be decreased.
- b) Inositol triphosphate will cause the release of Ca²⁺ from the endoplasmic reticulum.
- c) Increased binding of Ca2+ to the calmodulin will occur.
- d) Increased Ca²⁺-Calmodulin complex will bind to and activate calmodulin-binding proteins.
- e) Protein Kinase C will be activated by increased levels of diacylglycerol.

PRACTICE: All G proteins are activated by GDP/GTP exchange (binding to GTP), but lose their activity when they hydrolyze GTP to GDP. However, different G proteins can have different roles. Which of the following is INCORRECT?

- a) When active, $G_{\alpha s}$ activates adenylate cyclase.
- b) When active, $G_{\alpha s}$ results in increased production of cAMP.
- c) When active, $G_{\alpha i}$ results in the inhibition of adenylate cyclase.
- d) When active, $G_{\alpha q}$ results in the activation of phospholipase C.
- e) When active, $G_{\alpha s}$ results in increased production of inositol triphosphate.

PRACTICE: The reaction catalyzed by Phospholipase C can use all of the following EXCEPT:

- a) Phosphatidylinositol bisphosphate as a substrate.
- b) Diacylglycerol as a product.
- c) Diacylglycerol phosphate as a product.
- d) Inositol triphosphate as a product.
- e) Water as a substrate.