CONCEPT: MICHAELIS-MENTEN EQUATION

- Michaelis-Menten (MM) Equation: mathematically describes the _____ rates (V₀) of enzyme-catalyzed reactions.
 - □ Mathematically relates _____ to [___] via the V_{max} & the _____.
- ●MM-equation describes the rectangular _____ shape of the curve in a typical enzyme kinetics plot (V₀ vs. [S]).
 - □ Equation for a rectangular hyperbola curve is: $y = \frac{aX}{b + X}$
 - □ MM-equation simply _____ kinetics variables into the rectangular hyperbola equation.

EXAMPLE: Consider the following enzyme kinetics data for the enzyme catalyzed reaction of A → B.

- A) What is the K_m of the enzyme?
- B) What is the value of V_0 when [A] = 43.

V ₀ , μmoles/min
0.08
0.16
0.79
1.6
7.3
13
40
53
79
80
80

PRACTICE: A) Suppose the [S] = $10K_m$. Use the Michaelis-Menten equation to determine what percentage of the V_{max} will be equal to the value of V_0 .

B) Now suppose the [S] = $20K_m$. Use the Michaelis-Menten equation to determine what percentage of the V_{max} will be equal to the value of V_0 . What conclusion can be made from these calculations?

CONCEPT: MICHAELIS MENTEN EQUATION

PRACTICE: Which of the following statements about a V₀ vs. [S] plot for a Michaelis-Menten enzyme is false?

- a) As [S] increases, V₀ also increases.
- b) At very high [S], the curve becomes a horizontal line that intersects the y-axis at K_m.
- c) K_m is the [S] at which $V_0 = \frac{1}{2} V_{max}$.
- d) The shape of the curve is a hyperbola.

PRACTICE: What is the ratio of [S] to $K_m(\frac{[S]}{K_m})$ when the V_0 of an enzyme-catalyzed reaction is 80% of the V_{max} ?

- a) 1.
- b) 2.

c) 3.

d) 4.

e) 5.

PRACTICE: An enzyme-catalyzed reaction was carried out with a [substrate] initially 1000 times greater than the K_m for that enzyme. After 9 minutes, 1% of the total substrate was converted into 12 µmoles of product. If in a separate experiment, one-third as much enzyme and twice as much substrate had been combined, how long would it take for the same amount of product (12 µmoles) to be formed?

- a) 1.5 min.
- b) 13.5 min.
- c) 27 min.
- d) 3 min.
- e) 6 min.

PRACTICE: An enzyme catalyzes a reaction at a velocity of 10 μ mol/min when all enzyme active sites are occupied with substrate. The K_m for this substrate is 1 x 10⁻⁵ M. Assume that Michaelis-Menten kinetics are followed, calculate the initial reaction velocity (V₀) when:

A) [S] = 1 x
$$10^{-5}$$
 M. $V_0 =$ _____

B) [S] = 1 x 10⁻² M.
$$V_0 =$$