CONCEPT: STEREOCHEMISTRY OF MONOSACCHARIDES

•Recall: WAY back in previous videos, we did Organic Chemistry review. Be sure to check those out before moving on!

•To represent 3D structures on paper, *linear* monosaccharides are commonly displayed using Projections.

Calculating # of Stereoisomers

•# of Stereoisomers a molecule has = _____ (where ____ = # of chiral carbons).

□ Recall: Chiral Carbon: a carbon atom covalently bound to _____ distinct chemical groups.

EXAMPLE: Circle all of the chiral centers and determine how many stereoisomers each of the following molecules have.

of Stereoisomers:

of Stereoisomers:

PRACTICE: Which sugar is an enantiomer of sugar A? How many stereoisomers does sugar A have?

- a) None of them.
- b) Sugar B only.
- c) Sugar C only.
- d) Sugar D only.
- e) Both Sugars B and D.

Monosaccharide Epimers

• _____: diastereomers that differ ONLY in configuration of any one-single chiral carbon.

PRACTICE: Use the Fischer projections of the four monosaccharides below to answer the next two problems (A & B).

- A) The term that best describes the relationship of all four sugars to each other is:
 - a) Diastereomers.
- b) Enantiomers.
- c) Epimers.

- B) Sugars 2 and 4 are:
 - a) C1-epimers.
- d) C4-epimers.
- b) C2-epimers.
- e) C5-epimers.
- c) C3-epimers.

• Review of the different types of monosaccharide isomers.

PRACTICE: Two sugars which differ from one another only in configuration of one of many chiral carbon atoms are termed:

- a) Epimers.
- c) Optical isomers.
- e) Conformers.

- b) Enantiomers.
- d) Stereoisomers.
- f) None of these are correct.

CONCEPT: STEREOCHEMISTRY OF MONOSACCHARIDES

PRACTICE: Amongst the aldopentoses shown below, identify the pairs that are enantiomers.

PRACTICE: Which term best describes the relationship between D-Mannose & L-Mannose?

- a) Enantiomers.
- b) Anomers.
- c) Epimers.
- d) Diastereomers.
- e) Same molecules

PRACTICE: According to the Fischer projections of the following monosaccharides, circle the C-5 epimer of L-Talose?

