


CONCEPT: CHITIN

Polysaccharide	Type	Repeating Sugar(s)	Glycosidic Linkage	Function	Organism	Branched?
Chitin			1,4			

□ **N-a**cetyl**g**lucosamine = _____

PRACTICE: Chitin is:

- a) A branched homopolysaccharide of N-acetylglucosamine.
- b) A heteropolysaccharide of N-acetylglucosamine and N-acetylmuramic acid.
- c) An unbranched complex heteropolymer of many sugars.
- d) An unbranched homopolysaccharide of N-acetylglucosamine.

PRACTICE: Indicate whether or not each of the following characterizations applies to the following:

- (1) Chitin only, (2) Cellulose only, (3) Both Cellulose and Chitin, (4) Neither.
 - a) Structural polysaccharide: _____.
 - b) Monomers are glucose amino sugar derivatives: ______.
 - c) Glycosidic linkages are all (β-1,4): _____.
 - d) Homopolysaccharide: _____.

PRACTICE: Which of the following statements best describes the main structural difference between cellulose and chitin?

- a) Chitin contains α -1,4-glycosidic linkages while cellulose contains β -1,4-glycosidic linkages.
- b) The C-2 carbon in the cellulose monomer contains an N-acetylamino group instead of an -OH group.
- c) Cellulose is a linear, unbranched homopolysaccharide while chitin is a branched homopolysaccharide.
- d) The C-2 carbon in the chitin monomer contains an N-acetylamino group instead of an -OH group.