CONCEPT: BUFFER SOLUTION # 1) Buffers • Buffer: substance that _____ changes in pH when small/moderate amounts of strong acid/base are added. #### **EXAMPLE:** *The Henderson-Hasselbalch equation can be used to ______ buffer solutions. Henderson-Hasselbalch Equation $\mathbf{pH} = \mathbf{pK}_a + \log \frac{[\text{Conjugate Base}]_f}{[\text{Conjugate Acid}]_f}$ **PRACTICE:** A) What volume of 0.1 M acetic acid (pK_a = 4.8) is required to make 1 liter of 0.1 M buffer solution at pH = 5.8? - a) 193 mL - b) 91 mL - c) 909 mL - d) 807 mL B) What volume of 0.1 M sodium acetate is required? - a) 193 mL - b) 91 mL - c) 909 mL - d) 807 mL # 2) Effective Buffers ● Weak acids/bases & their _____ together create effective buffers. •The effective buffering _____ of a weak acid is centered around the inflection point & the pKa. \Box The effective buffer range is \pm ___ of the pK_a. **EXAMPLE:** Effective Buffer Range of Acetic Acid. Acetic Acid Acetate $CH_3COOH \longrightarrow CH_3COO^ pK_a = 4.8$ Acetic Acid Buffer Range: ____ to ____ ## **CONCEPT: BUFFER SOLUTION** **PRACTICE:** Which of the following compounds would make for the best buffer at pH 8? - a) Acetic acid, pK_a = 4.8 - b) Tricine, $pK_a = 8.15$ - c) Glycine, $pK_a = 9.9$ - d) Tris, $pK_a = 8.3$ # 3) Biological Buffers - ●Buffers are critical to life! Living systems use weak acids as buffers & a way to maintain ______ - □ Some buffers maintain intracellular pH whereas others maintain _____ pH. - ●The ______ buffer system (HPO₄-2 / H₂PO₄-) maintains intracellular pH. - ●The _____ buffer system maintains extracellular pH. ### **EXAMPLE:** **PRACTICE:** MOPS (pK_a =7.2) is a weak acid & acts as a buffer. Calculate the ratio of its basic/acidic species at pH = 6.0. - a) 0.098 - b) 1.24 - c) 0.377 - d) 0.063