CONCEPT: BUFFER SOLUTION

1) Buffers

• Buffer: substance that _____ changes in pH when small/moderate amounts of strong acid/base are added.

EXAMPLE:

*The Henderson-Hasselbalch equation can be used to ______ buffer solutions.

Henderson-Hasselbalch Equation $\mathbf{pH} = \mathbf{pK}_a + \log \frac{[\text{Conjugate Base}]_f}{[\text{Conjugate Acid}]_f}$

PRACTICE: A) What volume of 0.1 M acetic acid (pK_a = 4.8) is required to make 1 liter of 0.1 M buffer solution at pH = 5.8?

- a) 193 mL
- b) 91 mL
- c) 909 mL
- d) 807 mL

B) What volume of 0.1 M sodium acetate is required?

- a) 193 mL
- b) 91 mL
- c) 909 mL
- d) 807 mL

2) Effective Buffers

● Weak acids/bases & their _____ together create effective buffers.

•The effective buffering _____ of a weak acid is centered around the inflection point & the pKa.

 \Box The effective buffer range is \pm ___ of the pK_a.

EXAMPLE: Effective Buffer Range of Acetic Acid.

Acetic Acid Acetate $CH_3COOH \longrightarrow CH_3COO^ pK_a = 4.8$

Acetic Acid Buffer Range: ____ to ____

CONCEPT: BUFFER SOLUTION

PRACTICE: Which of the following compounds would make for the best buffer at pH 8?

- a) Acetic acid, pK_a = 4.8
- b) Tricine, $pK_a = 8.15$
- c) Glycine, $pK_a = 9.9$
- d) Tris, $pK_a = 8.3$

3) Biological Buffers

- ●Buffers are critical to life! Living systems use weak acids as buffers & a way to maintain ______
 - □ Some buffers maintain intracellular pH whereas others maintain _____ pH.
- ●The ______ buffer system (HPO₄-2 / H₂PO₄-) maintains intracellular pH.
- ●The _____ buffer system maintains extracellular pH.

EXAMPLE:

PRACTICE: MOPS (pK_a =7.2) is a weak acid & acts as a buffer. Calculate the ratio of its basic/acidic species at pH = 6.0.

- a) 0.098
- b) 1.24
- c) 0.377
- d) 0.063