CONCEPT: G PROTEIN-COUPLED RECEPTORS

- ●G Protein-Coupled Receptor (______): a _____ that associates/couples with a _____ protein.
 - \Box *GPCR* is an *integral membrane protein* that consists of _____ transmembrane α -helices (7-TMS proteins).
 - □ GPCRs have an *extra*cellular _____-terminal & an *intra*cellular _____-terminal.
- *G proteins* (*GTP-binding proteins*): intracellular *lipid-linked proteins* that hydrolyze _____ & have 3 subunits (α, β, γ) .
 - □ Guanosine-Tri-Phosphate (_____): similar in function to adenosine-triphosphate (_____).

3 Essential Components of GPCR Signal Transduction

- transmembrane receptor that changes *conformation* upon ligand-binding to activate G protein.
- 2 ____-Protein: intracellular peripheral protein that replaces GDP for GTP when activated & slowly hydrolyzes GTP.
 - \Box Contains _____ subunits (α , β , and γ) which _____ to α and β - γ subunits *upon GTP binding*.
- **Enzyme**: membrane protein produces a secondary messenger upon activation by α G-protein.
 - □ _____ messengers affect downstream targets that lead to *cell response*.

CONCEPT: G PROTEIN-COUPLED RECEPTORS

PRACTICE: A G protein-coupled receptor is comprised of _____ transmembrane α -helix/helices:

- a) 7.
- b) 8.
- c) 1.
- d) 10.
- e) 6.
- f) 14.

G_i = Brakes

PRACTICE: G protein-coupled receptors (GPCRs) are transmembrane proteins with ligand binding sites on the extracellular side of the membrane (near its N-terminal). What is the role of the G-protein in the GPCR signaling pathway?

- a) G proteins phosphorylate GPCRs.
- b) G proteins bind extracellular ligands and facilitate the transport into the cell.
- c) G proteins activate enzymes that transduce the signal throughout the cell.
- d) G proteins activate transcription of genes.
- e) G proteins facilitate dimerization of receptor monomers.

Stimulatory vs. Inhibitory G Proteins (G_s vs G_i)

types of G proteins classified according to their _____ on the effector enzyme.
G proteins (G_s): stimulate/activate the effector enzyme to create _____ secondary messenger.
G proteins (G_i): inhibit/inactivate the effector enzyme to create _____ secondary messenger.

G_s = Gas Pedal

PRACTICE: G_i is the inhibitory G protein of various effector enzymes. If a toxin released from a bacterial infection enters cells & covalently modifies the α -subunit of G_i so that it can no longer bind GTP, which of the following is a likely result?

Activate

- a) Increase in the synthesis of the secondary messenger molecule.
- b) Decrease in the synthesis of the secondary messenger molecule.
- c) The inhibitory G protein α -subunit will not dissociate from the β - γ subunits.
- d) Only A and C are true.
- e) Only B and C are true.