CONCEPT: G PROTEIN-COUPLED RECEPTORS - ●G Protein-Coupled Receptor (______): a _____ that associates/couples with a _____ protein. - \Box *GPCR* is an *integral membrane protein* that consists of _____ transmembrane α -helices (7-TMS proteins). - □ GPCRs have an *extra*cellular _____-terminal & an *intra*cellular _____-terminal. - *G proteins* (*GTP-binding proteins*): intracellular *lipid-linked proteins* that hydrolyze _____ & have 3 subunits (α, β, γ) . - □ Guanosine-Tri-Phosphate (_____): similar in function to adenosine-triphosphate (_____). ## 3 Essential Components of GPCR Signal Transduction - transmembrane receptor that changes *conformation* upon ligand-binding to activate G protein. - 2 ____-Protein: intracellular peripheral protein that replaces GDP for GTP when activated & slowly hydrolyzes GTP. - \Box Contains _____ subunits (α , β , and γ) which _____ to α and β - γ subunits *upon GTP binding*. - **Enzyme**: membrane protein produces a secondary messenger upon activation by α G-protein. - □ _____ messengers affect downstream targets that lead to *cell response*. ## **CONCEPT:** G PROTEIN-COUPLED RECEPTORS **PRACTICE:** A G protein-coupled receptor is comprised of _____ transmembrane α -helix/helices: - a) 7. - b) 8. - c) 1. - d) 10. - e) 6. - f) 14. G_i = Brakes **PRACTICE:** G protein-coupled receptors (GPCRs) are transmembrane proteins with ligand binding sites on the extracellular side of the membrane (near its N-terminal). What is the role of the G-protein in the GPCR signaling pathway? - a) G proteins phosphorylate GPCRs. - b) G proteins bind extracellular ligands and facilitate the transport into the cell. - c) G proteins activate enzymes that transduce the signal throughout the cell. - d) G proteins activate transcription of genes. - e) G proteins facilitate dimerization of receptor monomers. ## Stimulatory vs. Inhibitory G Proteins (G_s vs G_i) types of G proteins classified according to their _____ on the effector enzyme. G proteins (G_s): stimulate/activate the effector enzyme to create _____ secondary messenger. G proteins (G_i): inhibit/inactivate the effector enzyme to create _____ secondary messenger. G_s = Gas Pedal **PRACTICE:** G_i is the inhibitory G protein of various effector enzymes. If a toxin released from a bacterial infection enters cells & covalently modifies the α -subunit of G_i so that it can no longer bind GTP, which of the following is a likely result? Activate - a) Increase in the synthesis of the secondary messenger molecule. - b) Decrease in the synthesis of the secondary messenger molecule. - c) The inhibitory G protein α -subunit will not dissociate from the β - γ subunits. - d) Only A and C are true. - e) Only B and C are true.