CONCEPT: HENDERSON-HASSELBALCH EQUATION

1) The Henderson-Hasselbalch Equation

●Strong acids have small pK _a &	_ dissociate, but <i>weak acids</i> do	completely dissociate.
$\hfill\Box$ Calculating pH of $strong$ acid solution	ns is easy since initial acid concentrat	ion equals final [H $^+$] (ex. [HCl] _i = [H $^+$] _f).
□ Most biological acids are	acids.	
• The <u>Henderson-Hasselbalch equation</u> : expre	sses relationship between pH &	<u>_</u> .

□ Used to determine: 1) The final _____ of a weak acid solution after it reaches equilibrium.

Henderson-Hasselbalch Equation
$$\mathbf{pH} = \mathbf{pK}_{a} + \log \frac{[\text{Conjugate Base}]_{f}}{[\text{Conjugate Acid}]_{f}}$$

2) The ratio of [conjugate base] to [conjugate acid] when given pH.

EXAMPLE: Determine the ratio of [conjugate base] to [conjugate acid] for Aspirin (pK_a = 3.4) in the blood (pH = 7.4)?

- a) 16,000
- b) 10,000
- c) 7.9
- d) 4,200

PRACTICE: What is the pH of a mixture of 0.02 M sodium formate & 0.0025 M formic acid (pK_a = 3.75)?

- a) pH = 4.21
- b) pH = 1.27
- c) pH = 4.65
- d) pH = 9.34

PRACTICE: What is the ratio of [CH₃COO-] / [CH₃COOH] in an acetate buffer at pH = 7? pK_a = 4.76.

- a) 122.43
- b) 173.78
- c) 39.84
- d) 96.31

CONCEPT: HENDERSON-HASSELBALCH EQUATION

PRACTICE: Consider 100 mL of a 1M acid solution (pK_a = 7.4) at pH = 8. Calculate final pH if 30 mL of 1M HCl is added.

- a) pH = 7.4
- b) pH = 7.9
- c) pH = 7.1
- d) pH = 8.2