## **CONCEPT: COVALENT CATALYSIS**

## 4) Covalent Catalysis

• Covalent Catalysis: transient/temporary \_\_\_\_\_\_ bonds formed between the enzyme & substrate as an intermediate.

□ Still \_\_\_\_\_ overall reaction rate (compared to uncatalyzed rate) despite a longer pathway.

•Enzymes have amino acids that can act as \_\_\_\_\_ (donates electrons) & attack substrates.

□ Any covalent bonds formed with the enzyme must eventually be \_\_\_\_\_ to restore the original enzyme.

**EXAMPLE:** Covalent Catalysis.



**PRACTICE:** An enzyme has two key catalytic residues, Glu 35 (pK<sub>a</sub>= 5.9) and Asp 52 (pK<sub>a</sub>= 4.5). Which of the following is likely true about the mechanism for this enzyme if the optimum pH = 5.2?

a) Glu 35 is more likely a nucleophile than Asp 52.

c) Both a and b are true.

b) Glu 35 is more likely a general acid than Asp 52.

d) a, b & c are false.

**PRACTICE:** Which of the following mechanisms is not used by enzymes for catalysis?

a) General Acid-base catalysis.

d) Providing complementary electrostatics.

g) a & c

b) Induced fit of enzyme to transition state.

e) Binding of metal ions.

h) c&f.

c) Destabilizing the transition state.

f) Specific Acid-Base Catalysis.

i) b, c & f.

## **CONCEPT: COVALENT CATALYSIS**

PRACTICE: Which catalytic mechanism uses an electrophilic cofactor to stabilize a negative charge on an intermediate?

a) Acid-base catalysis.

c) Covalent catalysis.

b) Electrostatic catalysis.

d) Metal ion catalysis.

PRACTICE: Which of the following catalytic mechanisms proceeds via noncovalent interactions?

a) Acid-base catalysis.

c) Covalent catalysis.

e) b and d.

b) Electrostatic catalysis.

d) Metal ion catalysis.

f) a, b & d.

**PRACTICE:** Suppose that the covalent catalytic mechanism of an enzyme depends on a single active site amino acid (Cys), whose  $pK_a = 8.3$ . A mutation in a nearby amino acid residue of the enzyme only slightly alters the microenvironment so that the  $pK_a$  of the Cys residue increases to 10.3. Would this mutation cause the enzyme-catalyzed reaction rate to increase or decrease? Explain.

a) Reaction rate increases.

b) Reaction rate decreases.