
CONCEPT: REACTION RATE

- Reaction rate or velocity (v): the _____ that a given reaction proceeds from left to right.
 - \Box Typically expressed as a change in [_____] over a _____ interval. $\frac{\Delta [P]}{\Delta t}$

Reaction Velocity or Rate = Velocity = Velocity Velocity

- □ Reaction Rate (v): expressed in units of _____.
- •On a [P] vs Time plot, reaction rate (v) is the _____ of the line tangent to any point.
 - \square Recall: equation for a line: y = mx + b.
 - \Box Slope = $\underline{\qquad}$ = $v = \frac{\Delta[P]}{\Delta t}$

⁰ Time (Seconds

●Note: Typically, the reaction rate (v) of enzyme-catalyzed reactions _____ over time.

EXAMPLE: Calculate the reaction rate for A \rightarrow B, given that [A]_i = 1.0 M, [B]_i = 0 & [B]_f after 2 seconds = 0.02 M.

- a) 0.01 M/s
- b) -0.19 M/s
- c) 0.02 M/s
- d) -0.82 M/s

PRACTICE: Calculate the reaction rate for A \rightarrow B, given that [A]_i = 6.3 M, [B]_i = 0 & [A]_f after 4.8 seconds = 1.14 M.

- a) 1.69 M/s
- b) 2.53 M/s
- c) 0.24 M/s
- d) 1.08 M/s