CONCEPT: ERYTHROCYTE FACILITATED TRANSPORTER MODELS

Erythrocyte Glucose Uniporter (GLUT1)

- Classic example of facilitated passive transport are erythrocyte (red blood cell) Glucose Transporters (______).
 - □ GLUT1 conformationally changes as it transports glucose down its concentration gradient as a ____
 - □ Due to glucose metabolism, [Glucose] inside cells is generally kept _____ with respect to blood [glucose].

glucose transporters exist in different tissues with varied functional roles.

Transporter	Tissue Expression	Biological Role
	Ubiquitous	Basal Glucose Uptake
GLUT2	Intestine, Liver, Pancreas	Intestine: Pump digested glucose into blood. Liver: replenishes blood glucose. Pancreas: Regulation of insulin release
GLUT4	Muscle, Fat, Heart	Glucose import, increased by insulin

PRACTICE: Glucose transport into erythrocytes (not into intestinal epithelial cells) is an example of:

- a) Primary active transport.
- b) Secondary active transport.
- c) Facilitated symport.

- d) Facilitated Uniport.
- e) Simple Diffusion.

f) None of the above.

CONCEPT: ERYTHROCYTE FACILITATED TRANSPORTER MODELS

PRACTICE: Which of the following correctly ranks the steps of erythrocyte glucose transport by GLUT1?

- a) II, I, III, IV.
- b) II, I, IV, III.
- c) IV, III, II, I
- d) I, II, IV, III. e) IV, II, III, I
- **I.** A conformational change exposes glucose to the opposite site of the membrane.
- **II.** Glucose binds to the transporter on one side of the membrane.
- **III.** The GLUT1 transporter reverts back to its initial conformation.
- **IV.** The glucose molecule has a weakened affinity to GLUT1 and dissociates from the transporter.

Erythrocyte Cl⁻/HCO₃⁻ Antiporter

- •Recall: CO₂ produced by respiring tissues diffuses into erythrocytes, where _____ anhydrase converts it to HCO₃⁻.
 - □ CF/HCO₃- Antiporters: passively transport Cl⁻ & HCO₃- in ______ directions (called *Chloride*-_____).
- Chloride-Shift: phenomenon of Cl-/HCO₃-_____ near the tissues & near the lungs.
 - □ Cl- acts as *counterion* to _____ charge across membrane.
 - □ HCO₃- buffer maintains blood pH & ______ blood's capacity to transport CO₂ from tissues to lungs.

How Does the Chloride-Shift Work?

- 1 Near tissues, ↑ [HCO₃-] inside cell diffuses down its gradient to the _____ (via Cl-/HCO₃- antiporters).
- 2 Near *lungs*, the events occur.

CONCEPT: ERYTHROCYTE FACILITATED TRANSPORTER MODELS

PRACTICE: What is the chloride shift?

- a) The excretion of Cl⁻ by the kidney, preventing bicarbonate ions from causing an increase in plasma pH.
- b) The production of carbaminohemoglobin by chloride infusion from the plasma.
- c) The exchange of Cl- for bicarbonate ions in erythrocytes, causing HCO₃- to leave the cell.
- d) The production of bicarbonate by enzymatic degradation of chloride.

PRACTICE: The Chloride-Shift occurs when:

- a) Carbon dioxide moves into the RBCs.
- b) Hemoglobin binds carbon dioxide.
- c) Oxygen moves into the red blood cells.
- d) Bicarbonate moves out of the red blood cells.
- e) Chloride shifts across the nuclear membrane.

PRACTICE: Which of the following statements is FALSE concerning the chloride-bicarbonate exchanger?

- a) The exchanger increases the rate of bicarbonate transport across the membrane.
- b) The exchanger uses ATP as an energy source to drive bicarbonate transport.
- c) The exchanger transports chloride ions across the membrane.
- d) The exchanger is classified as an antiporter.

PRACTICE: In the "chloride shift" diagrams below, label each scenario (A & B) as occurring in either the tissues or lungs:

