CONCEPT: MICHAELIS-MENTEN VS LINEWEAVER BURK PLOTS ●Equations can't be used if multiple variables are missing, but V_{max} & K_m can be determined ______ via experiments. •A Lineweaver-Burk plot provides some graphical ______ over a Michaelis-Menten plot. □ Michaelis-Menten plots can only ______ V_{max} and K_m. □ Lineweaver-Burk plots can _____ accurately determine V_{max} and K_m. PRACTICE: Why is it preferable to use a Lineweaver-Burk over a Michaelis-Menten plot when studying enzyme kinetics? - a) To directly visualize $K_m\ \&\ V_{max}$ on the plot. - b) To plot kinetic data as a hyperbolic curve instead of a line. - c) To obtain a more accurate measure of the V_0 . - d) To remove terms that cannot be calculated in a typical enzyme kinetics experiment. - e) To get more accurate estimates of K_m & V_{max} . **PRACTICE:** You measure V_0 of an enzyme at 6 different [S] & plot the data on a Lineweaver-Burk plot. You then determine the line of best fit to the data to visualize the x & y intercepts. Calculate the V_{max} & K_m of the enzyme. Hint: pay close attention to the indicated units.