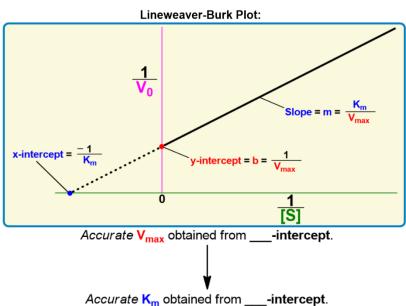
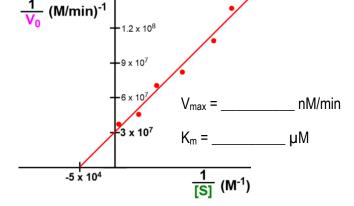

CONCEPT: MICHAELIS-MENTEN VS LINEWEAVER BURK PLOTS


●Equations can't be used if multiple variables are missing, but V_{max} & K_m can be determined ______ via experiments.

•A Lineweaver-Burk plot provides some graphical ______ over a Michaelis-Menten plot.

□ Michaelis-Menten plots can only ______ V_{max} and K_m.

□ Lineweaver-Burk plots can _____ accurately determine V_{max} and K_m.



PRACTICE: Why is it preferable to use a Lineweaver-Burk over a Michaelis-Menten plot when studying enzyme kinetics?

- a) To directly visualize $K_m\ \&\ V_{max}$ on the plot.
- b) To plot kinetic data as a hyperbolic curve instead of a line.
- c) To obtain a more accurate measure of the V_0 .
- d) To remove terms that cannot be calculated in a typical enzyme kinetics experiment.
- e) To get more accurate estimates of K_m & V_{max} .

PRACTICE: You measure V_0 of an enzyme at 6 different [S] & plot the data on a Lineweaver-Burk plot. You then determine the line of best fit to the data to visualize the x & y intercepts. Calculate the V_{max} & K_m of the enzyme. Hint: pay close attention to the indicated units.

