CONCEPT: ISOELECTRIC POINT

● <i>point (pI</i>): exact	at which a molecule has	no net charge (+ & - balanced means net charge = _).
●pl is always the midpoint between t	ne pKa's for the	_ ionizations involving the <i>neutral</i> species.	

- □ More acidic amino acids have more acidic _____ values.
- □ When pH = pl of a molecule, the molecule will _____ migrate in an electric field.
- □ pl is a useful property in _____: the separation of net-charged-proteins with an electric field.

pl of Amino Acids with Non-Ionizable R-groups

- Isoelectric point can be easily calculated using the _____ values of a molecule.
 - $\ \square$ Amino acid pl is simply the _____ of the appropriate *two* pK_a values.

Isoelectric Point

$$pl = \frac{pK_{a1} + pK_{a2}}{2}$$

EXAMPLE: Calculate the isoelectric point of Val. $pK_{a1} = 9.62$. $pK_{a2} = 2.32$.

- a) 7.23
- b) 7.3
- c) 5.97
- d) 11.94

PRACTICE: Draw the structure of Leu and determine its pl. $pK_{a1} = 9.6$. $pK_{a2} = 2.4$.

- a) 7.59
- b) 6.0
- c) 3.91
- d) 5.5

PRACTICE: At any pH below the pI, the population of amino acids in solution with non-ionizable R-groups will have:

- a) a net negative charge.
- b) a net positive charge.
- c) no charged groups.
- d) no net charge.
- e) positive and negative charges in equal concentrations.