CONCEPT: NATIVE GEL ELECTROPHORESIS

Native gel electrophoresis: electric field separate	s charged proteins based on their	·charges,	shapes & sizes.
□ Also known as Native Polyacrylamide G	el <u>E</u> lectrophoresis (Native).	
•An electric field generates negative & positive ch	arges on ends o	f the gel.	
□ Only proteins with <i>native</i> n	nove in electric fields	_ their opposite charge).
□ Larger proteins travel but	proteins retain native shapes & c	harges, which also affe	ct gel migration.
□ Different proteins appear as different	on the gel & quantities i	ndicated by band intens	sity/thickness.
EXAMPLE: Native-PAGE.	Protein A	Protein B	Protein C
Power Supply	Native Net = -5	Native Net = -1 Charge	Native Net Charge = -1
Sample wells - electrode	Protein A Ma	Nativ	otein C Mass otein C ve Net = -1
affected by ma	E: migration in gel eass but also native Pro Native Net Charge	Protein B Native Net = -1 Charge	

PRACTICE: Which advantage does native gel electrophoresis provide as a protein technique?

- a) Allows separation of all native proteins as they migrate through the gel.
- b) Allows separation of all native protein subunits based on their size (large proteins travel slower).
- c) Native proteins always migrate through the electric field towards the positive end.
- d) Separates charged proteins while allowing them to retain their native conformation.

PRACTICE: Which option below best describes the native gel electrophoresis migration for Proteins A, B, C & D (assuming equal mass & shape) considering that the buffer solution has a pH = 6.4.

Protein A pl = 5.2, Protein B pl = 6.4, Protein C pl = 7.0, Protein D pl = 9.2

- a) A & B will migrate to the negative pole while C & D migrate to the positive pole.
- b) A will migrate to the positive pole, B will not migrate, while C & D migrate to the negative pole.
- c) A & B will migrate to the positive pole while C & D migrate to the negative pole.
- d) A will migrate to the negative pole, B will not migrate, while C & D migrate to the positive pole.

CONCEPT: NATIVE GEL ELECTROPHORESIS

PRACTICE:

A) Consider both the peptide Gly—Pro—Ser—Glu—Thr (in a linear chain) and a cyclic peptide of the same exact sequence Gly—Pro—Ser—Glu—Thr (with a peptide bond linking the Thr & Gly). Are these peptides chemically the same? Explain.

B) Can you expect to separate the peptides above by Native-PAGE? Why or why not?