CONCEPT: ENTROPY

- ●Entropy: a measure of randomness & a property of _____
 - □ Laws of thermodynamics: describes flows & changes of *heat*, *energy* & *matter* in reactions.

EXAMPLE:

System & Surroundings

- •_____: local portion of the universe that we are focusing on; (surroundings: rest of the universe).
- •Biological systems: *open systems* that exchange both _____ & ____ with the surroundings.

Understanding Entropy

System

Boundary

- •Entropy: a measure of _____, or randomness; the greater the disorder, the _____ the entropy.
- Reactions move the Universe toward a state of maximum entropy.

Energy In

- □ Local entropy can decrease if *accompanied* by an _____ in universal entropy.
- □ High universal entropy is associated with more _____ & lower ____ within a system.

Glucose

ADP Glucose-6-phosphate

EXAMPLE:

Gibbs Free Energy Equation

•Gibbs Free Energy Equation expresses the link between *changes* in entropy (ΔS), enthalpy (ΔH) & free energy (ΔG).

EXAMPLE: Appropriately label each term:

CONCEPT: ENTROPY

PRACTICE: When solid ice water melts to liquid water, how does that affect its entropy?

- a) Entropy decreases.
- b) Entropy increases.
- c) Entropy stays the same.
- d) Impossible to tell. Needs more information.

PRACTICE: How does the entropy change with the following reaction?

$$N_{2(g)} + 3 H_{2(g)} \longrightarrow 2 NH_{3(g)}$$

- a) Entropy decreases.
- b) Entropy increases.
- c) Entropy stays the same.
- d) Impossible to tell. Needs more information.

PRACTICE: Consider a reaction at 100°C with $\Delta G = 15$ kJ and $\Delta H = 40$ kJ. Calculate the system's change in entropy.

- a) 139.13 kJ/K
- b) -13.3 kJ/K
- c) 0.15 kJ/K
- d) 0.07 kJ/K