CONCEPT: DETERMINING PREDOMINATE SPECIES | Recall: Henderson- | Hasselbalch rev | eals ratio o | f (conjugate b | pasel to | conjugate a | cid1 | |--------------------------------------|------------------|---------------|-----------------|----------|--------------|---------| | Troodii. Fromacioon | i laccolbaion io | roalo ratio o | i joorijagato t | Jacon to | conjugate at | JIQ . | □ Conjugate _____ and conjugate _____ are different forms/species of a molecule. •______ species: the *most abundant* form of a molecule that exists under specific conditions. □ of the solution & of the acid dictates the predominate species. ## pH vs. pKa •Comparing solution pH to an acid's pKa reveals relative [Conjugate _____] & [Conjugate _____]. □ Recall: Conjugate bases are _____ (1 less H) & Conjugate acids are ____ (1 more H) **EXAMPLE:** Comparing pH & pK_a to fill-in the blanks. | | | | Henderson-Hasselbalch Equation: | |------------------------------------|-------------------------|---------------------------------|---| | Comparing
pH to pK _a | Predominate Species | Protonated? | $pH = pK_a + log \frac{[Conjugate Base]_f}{[Conjugate Acid]_f}$ | | $pH = pK_a$ | [Conj-Base] [Conj-Acid] | 50% Deprotonated 50% Protonated | рН = рК _а + log ——— | | pH < pK _a | [Conj-Base] [Conj-Acid] | Majority | pH = pK _a + log ——— | | pH > pK _a | [Conj-Base] [Conj-Acid] | Majority | рН = рК _а + log | **PRACTICE:** Fill-in the blanks and indicate the predominate species at pH 8.3. - a) Acetic acid. - b) Acetate. **PRACTICE:** Consider the following pKa value for pyruvic acid. Which of the following species predominates at pH = 7.4? - a) Conjugate base (CB). - b) Conjugate acid (CA). - c) Neither predominates ([CA] = [CB]). - d) Not enough info to tell.