CONCEPT: HEMIACETAL VS. HEMIKETAL

Cyclization of Monosaccharides

- •Sugars cyclize via a *nucleophilic addition* reaction between an ______ & an aldehyde/ketone.
 - □ Alcohols = _____. □ Aldehydes & ketones = *electrophilic*.
 - □ Monosaccharide cyclization forms an _____ carbon.

EXAMPLE: Alcohols react with aldehydes & ketones during monosaccharide cyclization.

Cyclization Forms Hemiacetals & Hemiketals

- •Upon monosaccharide cyclization, the *anomeric carbon* becomes part of a relatively _____ hemiacetal or hemiketal.
 - □ Hemiacetals: half of an _____ group resulting from -OH + aldehyde.
 - □ Hemiketals: half of a _____ group resulting from -OH + ketone.

EXAMPLE: Hemiacetals & Hemiketals:

PRACTICE: Which of the following is a hemiketal?

CONCEPT: HEMIACETAL VS. HEMIKETAL

PRACTICE: For monosaccharides to cyclize, an alcohol group must attack a carbonyl group within the same sugar.

- A) Which carbon of the linear ketohexose shown below has the reactive carbonyl?
 - a) C1.
- b) C2.
- c) C3.
- d) C4.
- e) C5.

- B) Upon cyclization, would a hemiacetal or hemiketal form?
 - a) Hemiacetal.
- b) Hemiketal.

PRACTICE: Use the image of the following glucose molecule to answer the questions.

- A) Upon cyclization, which of the red circled carbons becomes the anomeric carbon?
 - a) A.
- b) B.
- c) C.
- d) D.
- e) E.
- B) Upon cyclization, would a hemiacetal or hemiketal form?
 - a) Hemiacetal.
- b) Hemiketal.

PRACTICE: In the reaction shown below the compound on the far right is a:

- a) Acetal.
- b) Alcohol.
- R—C—H
- + H-O-R

OH | | R—C—O—R^I |

- c) Ether.d) Ester.
- u) LSter.
- e) Hemiacetal.