CONCEPT: ACIDS AND BASES ## Brønsted-Lowry Acids & Bases ●Brønsted-Lowry Acids: substances capable of ______ a proton (H+). ●Brønsted-Lowry Bases: substances capable of ______ a proton (H+). • Recall: Conjugate acids & conjugate bases differ from each other, respectively, by a gain or loss of *one* proton. ## **Amphiprotic Molecules** • _____ molecules: can act as either a Brønsted-Lowry acid or a base depending on conditions. □ _____ is an amphiprotic molecule. **EXAMPLE:** PRACTICE: Which is the conjugate base of methylamine (CH₃NH₂)? - a) CH₃NH- - b) CH₃NH₃+ - c) CH₂NH₂- - d) CH₃NH₂OH- - e) None of the above. **PRACTICE:** Consider the reaction & determine which of the following is a conjugate acid-base pair? $$HC_2O_4^{-}(aq) + H_2O_{(I)} \longrightarrow H_3O^{+}(aq) + C_2O_4^{2-}(aq)$$ - b) H_2O and $C_2O_4^{2-}$ - c) HC_2O_4 and H_3O + - d) HC_2O_4 and C_2O_4 ²-