CONCEPT: ACIDS AND BASES

Brønsted-Lowry Acids & Bases

●Brønsted-Lowry Acids: substances capable of ______ a proton (H+).

●Brønsted-Lowry Bases: substances capable of ______ a proton (H+).

• Recall: Conjugate acids & conjugate bases differ from each other, respectively, by a gain or loss of *one* proton.

Amphiprotic Molecules

• _____ molecules: can act as either a Brønsted-Lowry acid or a base depending on conditions.

□ _____ is an amphiprotic molecule.

EXAMPLE:

PRACTICE: Which is the conjugate base of methylamine (CH₃NH₂)?

- a) CH₃NH-
- b) CH₃NH₃+
- c) CH₂NH₂-
- d) CH₃NH₂OH-
- e) None of the above.

PRACTICE: Consider the reaction & determine which of the following is a conjugate acid-base pair?

$$HC_2O_4^{-}(aq) + H_2O_{(I)} \longrightarrow H_3O^{+}(aq) + C_2O_4^{2-}(aq)$$

- b) H_2O and $C_2O_4^{2-}$
- c) HC_2O_4 and H_3O +
- d) HC_2O_4 and C_2O_4 ²-