Charged Ions Flow Down Electrochemical Gradients

•Direction that charged ions electrochemical gradient.	diffuse across membranes depends on	n its &
Electro-chemical Gradient:	a combination & balance of the following	ng gradients:
1) g	gradient: a difference in chemical conce	entration between two regions.
$\begin{tabular}{ll} \square Recall: Chemicals flow $down$ their concentration gradients, (from \uparrow to \downarrow) to reach $$chemical $$$ $$$ $$$$ $$$ $$$$ $$$$		
2) gradient: a difference in the sum of electrical charges between two regions.		
□ Charged ions flow toward charged regions to reach <i>electrical</i> ⇌ (net charge = 0).		
Chemical Gradient	+ Electrical Gradient	= Electrochemical Gradient
	+ — — — — — — — — — — — — — — — — — — —	Chemical Gradunt

Transmembrane Potential

- ullet Transmembrane Potential/Voltage ($\Delta\Psi$ or V_m): difference in electrical charge between inside & outside of a membrane.
- □ *Usually* presented from relative position of inside a membrane & expressed in units of volts or millivolts (V or mV).

•Generally, *inside* of cells are more _____ with respect to the outside ($\Delta\Psi$ is *usually* negative).

Types of Ion Channels

•Ion channels selectively & passively transport *specific* _____ (such as Na⁺, K⁺, and Cl⁻) across a membrane.

• types of ion-channels:

1) _____ Ion Channel: remain open, *always* allowing *leakage* of ions down their electrochemical gradients.

2)______gated Ion Channel: opens/closes due to regulation by _____cellular *ligand* molecules.

3)_____-gated Ion Channel: opens/closes due to regulation by _____cellular signaling molecules.

□ When ΔΨ ≠ 0, it establish esposite__

gradienato itom & cations

potential/voltage (ΔΨ).

PRACTICE: Facilitated diffusion of charged ions across a biological membrane is

_: a) Generally irreversible.

- b) Endergonic.
- c) Driven directly by ATP.
- d) Not specific with respect to the type of ion.
- e) Driven by a difference in the electrochemical gradient.

PRACTICE: Which of the following statements is false about a signal-gated ion channel receptor? a) They are present in the cell membrane.

- b) They respond to the presence of intracellular signaling molecules.
- c) Differences in membrane potential can affect whether the channel receptors are open or close.
- d) They are a type of gated-ion-channel that can open and close under different conditions.

PRACTICE: The voltage-gated potassium channels associated with an action potential provide an example of what type of membrane transport?

- a) Simple diffusion.
- b) Facilitated diffusion.
- c) Coupled transport.
- d) Primary active transport.
- e) Secondary active transport.