CONCEPT: RECAP OF INSULIN SIGNALING **PRACTICE:** Match the following terms with their correct descriptions: | a) | insulin | | .• | | |----|---------|--|----|--| |----|---------|--|----|--| - b) Receptor tyrosine kinase _____. - c) Grb2 _____. - d) Sos _____. - e) Ras _____. - f) IRS _____. - g) Phosphoinositide 3 Kinase _____. - h) PIP₃-Dependent Kinase 1 _____. - i) Akt/PKB _____. - 1. Ligand. - 2. Activates Ras. - 3. Adaptor protein in insulin signaling. - 4. Fully activates Akt/PKB. - 5. Binds to IRS-1 and forms IP₃. - 6. Insulin Receptor. - 7. Promotes expression of GLUT4 to membrane. - 8. Monomeric G-protein. - 9. Binds to IRS-1 and Sos. PRACTICE: After a thorough investigation, one would likely find that many hormones like epinephrine, insulin, & glucagon: - a) Can only regulate key cytosolic enzymes in metabolic pathways. - b) Can only regulate the activity of nuclear transcription factors. - c) Can regulate key cytosolic enzymes in metabolic pathways and regulate the activity of nuclear transcription factors.