CONCEPT: RECAP OF INSULIN SIGNALING

PRACTICE: Match the following terms with their correct descriptions:

a)	insulin		.•	
----	---------	--	----	--

- b) Receptor tyrosine kinase _____.
- c) Grb2 _____.
- d) Sos _____.
- e) Ras _____.
- f) IRS _____.
- g) Phosphoinositide 3 Kinase _____.
- h) PIP₃-Dependent Kinase 1 _____.
- i) Akt/PKB _____.

- 1. Ligand.
- 2. Activates Ras.
- 3. Adaptor protein in insulin signaling.
- 4. Fully activates Akt/PKB.
- 5. Binds to IRS-1 and forms IP₃.
- 6. Insulin Receptor.
- 7. Promotes expression of GLUT4 to membrane.
- 8. Monomeric G-protein.
- 9. Binds to IRS-1 and Sos.

PRACTICE: After a thorough investigation, one would likely find that many hormones like epinephrine, insulin, & glucagon:

- a) Can only regulate key cytosolic enzymes in metabolic pathways.
- b) Can only regulate the activity of nuclear transcription factors.
- c) Can regulate key cytosolic enzymes in metabolic pathways and regulate the activity of nuclear transcription factors.