CONCEPT: AUTOIONIZATION OF WATER #### 1) Water Autoionization - Water tends to slightly <u>autoionize</u>, or react with itself to form ions: _____ cations (H₃O⁺) & _____ anions (OH⁻). - •The ionization reaction is *reversible* & takes place ______. #### **EXAMPLE:** - •Free protons, hydrogen ions & H+ are all essentially synonyms. - •H₃O⁺ is commonly simplified to H⁺, but free protons are _____ in aqueous systems (they exist as H₃O⁺). **EXAMPLE:** Alternative depiction of water ionization. $$H_2^{\circ} \rightleftharpoons H^{\oplus} + {\overset{\ominus}{\circ}}_{Base}$$ ## 2) Ion Constant of Water (K_w) - ●Because H+ & OH- participate in many biochemical reactions, their _____ are relevant - □ The [H+] & [OH-] can be determined from the equilibrium constant: $\kappa_{eq} = \frac{[Products]_{eq}}{[Reactants]_{eq}}$ - The _____ of water (K_w) is a simple *rearrangement* of the equilibrium constant & the product of [H+][OH-]. **EXAMPLE:** K_{eq} & K_w for autoionization of water. Equilibrium Constant of Water (K_{eq}) $$K_{eq} = \frac{[][]}{[H_2O]}$$ Ion Constant of Water ($$\mathbf{K}_{\mathrm{w}}$$) $$K_{eq}[H_2O] = K_w = [H^+][OH^-] = 1.0 \times 10^{-14} M^2$$ - •K_w can differ depending on _____, but in biological systems, K_w is always assumed to be 1.0 x 10⁻¹⁴ M². - $\hfill \square$ K_w allows us to calculate either [H+] or [OH-] when given the concentration of one of the ions. **PRACTICE:** Calculate [H+] in a solution given that [OH-] is 1.0 x 10-10 M. - a) 1.0 x 10⁻² M - b) 1.0 x 10⁻³ M - c) 1.0 x 10⁻⁴ M - d) 1.0 x 10⁻⁵ M **PRACTICE:** Calculate [OH-] in a solution given that [H+] is 1.0 x 10-11.8 M. - a) 1.0 x 10^{-11.8} M - b) 1.0 x 10^{-6.8} M - c) 1.0 x 10^{-4.5} M - d) 1.0 x 10^{-2.2} M ## **CONCEPT:** AUTOIONIZATION OF WATER ## 3) Proton Hopping • <u>Proton hopping</u>: _____ and ____ ions can diffuse much more rapidly than other ions in aqueous solutions. □ Protons from a H₃O⁺ or H₂O can continuously "hop" to neighboring water molecules or OH⁻ ions. # **EXAMPLE:** Proton hopping. **PRACTICE:** Which of the following ions is likely to diffuse the most rapidly in biological systems? - a) Ca²⁺ - b) OH- - c) Mg²⁺ - d) CI- **PRACTICE:** The magnitude of K_w indicates that ______. - a) water autoionizes very slowly. - b) water autoionizes very quickly. - c) water autoionizes to a small extent. - d) water ionizes to a large extent (completely).