CONCEPT: AUTOIONIZATION OF WATER

1) Water Autoionization

- Water tends to slightly <u>autoionize</u>, or react with itself to form ions: _____ cations (H₃O⁺) & _____ anions (OH⁻).
- •The ionization reaction is *reversible* & takes place ______.

EXAMPLE:

- •Free protons, hydrogen ions & H+ are all essentially synonyms.
- •H₃O⁺ is commonly simplified to H⁺, but free protons are _____ in aqueous systems (they exist as H₃O⁺).

EXAMPLE: Alternative depiction of water ionization.

$$H_2^{\circ} \rightleftharpoons H^{\oplus} + {\overset{\ominus}{\circ}}_{Base}$$

2) Ion Constant of Water (K_w)

- ●Because H+ & OH- participate in many biochemical reactions, their _____ are relevant
 - □ The [H+] & [OH-] can be determined from the equilibrium constant: $\kappa_{eq} = \frac{[Products]_{eq}}{[Reactants]_{eq}}$
- The _____ of water (K_w) is a simple *rearrangement* of the equilibrium constant & the product of [H+][OH-].

EXAMPLE: K_{eq} & K_w for autoionization of water.

Equilibrium Constant of Water (K_{eq})

$$K_{eq} = \frac{[][]}{[H_2O]}$$

Ion Constant of Water (
$$\mathbf{K}_{\mathrm{w}}$$
)

$$K_{eq}[H_2O] = K_w = [H^+][OH^-] = 1.0 \times 10^{-14} M^2$$

- •K_w can differ depending on _____, but in biological systems, K_w is always assumed to be 1.0 x 10⁻¹⁴ M².
 - $\hfill \square$ K_w allows us to calculate either [H+] or [OH-] when given the concentration of one of the ions.

PRACTICE: Calculate [H+] in a solution given that [OH-] is 1.0 x 10-10 M.

- a) 1.0 x 10⁻² M
- b) 1.0 x 10⁻³ M
- c) 1.0 x 10⁻⁴ M
- d) 1.0 x 10⁻⁵ M

PRACTICE: Calculate [OH-] in a solution given that [H+] is 1.0 x 10-11.8 M.

- a) 1.0 x 10^{-11.8} M
- b) 1.0 x 10^{-6.8} M
- c) 1.0 x 10^{-4.5} M
- d) 1.0 x 10^{-2.2} M

CONCEPT: AUTOIONIZATION OF WATER

3) Proton Hopping

• <u>Proton hopping</u>: _____ and ____ ions can diffuse much more rapidly than other ions in aqueous solutions.

□ Protons from a H₃O⁺ or H₂O can continuously "hop" to neighboring water molecules or OH⁻ ions.

EXAMPLE: Proton hopping.

PRACTICE: Which of the following ions is likely to diffuse the most rapidly in biological systems?

- a) Ca²⁺
- b) OH-
- c) Mg²⁺
- d) CI-

PRACTICE: The magnitude of K_w indicates that ______.

- a) water autoionizes very slowly.
- b) water autoionizes very quickly.
- c) water autoionizes to a small extent.
- d) water ionizes to a large extent (completely).