CONCEPT: INHIBITORY ADENYLATE CYCLASE GPCR SIGNALING

•Recall: some G proteins _____ the effector enzyme.

□ Same pathway as before, but α subunit of G-protein (G_i) ultimately _____ activity of the effector enzyme.

• Integration of stimulatory & inhibitory GPCR pathways can _____ the activity of the effector enzyme.

EXAMPLE: Adenylate Cyclase Activity Regulated by Inhibitory GPCR Pathway.

PRACTICE: The addition of the nonhydrolyzable GTP-analog, GTP γ S (shown below), is a common cell culture technique. If only affecting the inhibitory pathway, what effect would GTP γ S have on cellular cAMP levels?

- a) cAMP levels increase because adenylate cyclase can no longer hydrolyze GTP.
- b) cAMP levels decrease because G₅ remains in its inactive state and can no longer bind GDP.
- c) cAMP levels decrease because Gi remains in its active state since it can no longer hydrolyze GTP.
- d) cAMP levels increase because G_i remains in its inactive state since it can no longer hydrolyze GTP.

PRACTICE: If a chemical is an inhibitor of the enzyme adenylyl cyclase, which of the following steps in the GPCR signaling pathway would be directly blocked?

- a) Activation of gene transcription.
- b) Exchange of GTP for GDP.
- c) Ligand bound receptor activation.
- d) Synthesis of the secondary messenger cAMP.

CONCEPT: INHIBITORY ADENYLATE CYCLASE GPCR SIGNALING

GPCR Desensitization

■When a signal is	present (repeated exposure), cells need the ability to desensitize.				
•	: dampening of the c	ellular response EVEN W	/HEN the primary messenger	ligand <i>persist</i> s.	
β-Adrenergic GPCR Kinase ():		C-terminal Serines on ligand-bound GPCR.			
□ β-Arrestin (): protein that binds		ds phosphorylated GPCR	orylated GPCR, its interaction with G protein.		
β-Aarr can initiate temporary		of GPCR in	of GPCR in vesicles (making GPCR inaccessible).		
β-Adrenergic GPCR 1) Epinepherine β-Adrenergic GPCR.	β-Adrenergic GPCR. β-Adrenergic GPCR.	β-Adrenergic GPCR β-Arrestin G-protein association with GPCR δ triggers	Officer β-Arrestin GPCR	Arrested GPCR GPCR GPCR GPCR GPCR GPCR GPCR GPCR	

EXAMPLE: A cell line expressing the β-Adrenergic GPCR is incubated in epinephrine for 5 minutes. The cells are then lysed and the GPCR is purified. To determine if β-arrestin is bound to the GPCR, the purified GPCR solution is examined by Western Blot using an antibody against β-arrestin (Lanes #1 & 2). The experiment is repeated, but this time prior to and during epinephrine addition, the cells are incubated in an inhibitor that blocks β-Adrenergic GPCR phosphorylation by the GPCR kinase βARK (Lanes #3 & 4). Results are shown below. What conclusion can be made from the results/data?

- a) In order for β -arrestin to bind, the receptor must be exposed/bound to its ligand.
- b) In order for β -arrestin to bind, the receptor cannot be exposed/bound to its ligand.
- c) In order for β -arrestin to bind, β ARK must be bound to the receptor first.
- d) In order for β -arrestin to bind, the inhibitor must first bind to the receptor.

CONCEPT: INHIBITORY ADENYLATE CYCLASE GPCR SIGNALING

PRACTICE: How does GPCR termination differ from GPCR desensitization?

- a) GPCR termination promotes GPCR signaling while GPCR desensitization overexpresses the GPCR.
- b) GPCR desensitization involves degradation of the GPCR while GPCR termination promotes GTPase activity of G_{α} .
- c) GPCR termination blocks the GTPase activity of G_{α} while GPCR desensitization promotes ligand binding.
- d) GPCR termination resets the signaling pathway in the absence of ligand, whereas GPCR desensitization dampens the cell response even in the presence of ligand.

PRACTICE: Which of the following statements about beta-arrestin and GPCRs is TRUE?

- a) Beta-arrestin phosphorylates activated GPCRs.
- b) Beta-arrestin can cause desensitization of a signal by inducing GPCR exocytosis.
- c) Beta-arrestin is pre-bound to inactive GPCRs (no ligand bound).
- d) Beta-arrestin binds to phosphorylated residues on the carboxy-terminus region of GPCRs.
- e) Beta-arrestin binds to phosphorylated residues on the amino-terminus region of GPCRs.

PRACTICE: Which of the following are involved in the desensitization of the β-adrenergic receptor?

a) β-adrenergic receptor kinase.

e) GAPs.

b) β-arrestin.

f) A and B only.

c) Protein Kinase A.

g) A, B and D only.

d) βARK.

h) A, B, and E only.