CONCEPT: V_{MAX} ENZYME

Maximum Reaction Velocity (V_{max})

- •V_{max}: the _____ maximum reaction velocity at ∞ large [S] resulting from _____ active sites.
 - □ Reaction velocities can ______ V_{max} but it can _____ actually be attained by any enzyme.
 - □ Recall: _____ velocity (V₀) is the *best chance* a reaction has at *approaching* its maximum velocity (V_{max}).
- V_{max} acts as a horizontal ______ to limit reaction velocity.

PRACTICE: In a Michaelis-Menten kinetics plot (V_0 vs. [S]), what is the reason that the curve reaches a plateau and V_0 cannot increase any further upon adding more substrate?

- a) The enzyme becomes locked in an inactive conformation.
- b) Enzymes match rate of catalysis & rate of ES formation.
- c) The active site of all the enzymes are saturated with substrate.
- d) There is an inhibitor present.
- e) V_{max} can only be attained by some enzymes.
- f) Enzyme is locked in an inactive conformation.

V_{max} can be Expressed with a Rate Law

- •Recall: V_{max} can only occur at saturating [___] where all available enzyme active sites are 100% full.
 - \Box Under saturating [S], all available enzymes (E_T) will be associated with substrate to form ES, so [E]_T = [____].
- •V_{max} & [E]_T relationship is expressed via substituting variables into the _____ for the Product formation step.

CONCEPT: V_{MAX} ENZYME

V_{max} is Affected by [E]_T

• The [E]_T _____ impacts the theoretical maximum reaction velocity (_____). □ The ____ the [E]_T, the ____ the V_{max} .

EXAMPLE: Analyze the graph and fill-in the blank below.

PRACTICE: V₀ for an enzyme-catalyzed reaction:

- a) Increase when pH increases.
- c) Is limited by the [E].

e) b&c.

b) Is limited by the [S].

- d) Is limited by the reaction's slowest step.
- f) b, c & d.

PRACTICE: What kind of kinetics is observed initially in an enzymatic reaction under conditions where [S] is saturating?

- a) Cooperative kinetics.
- b) First order kinetics.
- c) Zero order kinetics.
- d) Second order kinetics.
- e) The system is at equilibrium and reaction proceeds equally in both directions.