CONCEPT: V_{MAX} ENZYME #### Maximum Reaction Velocity (V_{max}) - •V_{max}: the _____ maximum reaction velocity at ∞ large [S] resulting from _____ active sites. - □ Reaction velocities can ______ V_{max} but it can _____ actually be attained by any enzyme. - □ Recall: _____ velocity (V₀) is the *best chance* a reaction has at *approaching* its maximum velocity (V_{max}). - V_{max} acts as a horizontal ______ to limit reaction velocity. **PRACTICE:** In a Michaelis-Menten kinetics plot (V_0 vs. [S]), what is the reason that the curve reaches a plateau and V_0 cannot increase any further upon adding more substrate? - a) The enzyme becomes locked in an inactive conformation. - b) Enzymes match rate of catalysis & rate of ES formation. - c) The active site of all the enzymes are saturated with substrate. - d) There is an inhibitor present. - e) V_{max} can only be attained by some enzymes. - f) Enzyme is locked in an inactive conformation. ### V_{max} can be Expressed with a Rate Law - •Recall: V_{max} can only occur at saturating [___] where all available enzyme active sites are 100% full. - \Box Under saturating [S], all available enzymes (E_T) will be associated with substrate to form ES, so [E]_T = [____]. - •V_{max} & [E]_T relationship is expressed via substituting variables into the _____ for the Product formation step. ## **CONCEPT:** V_{MAX} ENZYME # V_{max} is Affected by [E]_T • The [E]_T _____ impacts the theoretical maximum reaction velocity (_____). □ The ____ the [E]_T, the ____ the V_{max} . **EXAMPLE:** Analyze the graph and fill-in the blank below. **PRACTICE:** V₀ for an enzyme-catalyzed reaction: - a) Increase when pH increases. - c) Is limited by the [E]. e) b&c. b) Is limited by the [S]. - d) Is limited by the reaction's slowest step. - f) b, c & d. PRACTICE: What kind of kinetics is observed initially in an enzymatic reaction under conditions where [S] is saturating? - a) Cooperative kinetics. - b) First order kinetics. - c) Zero order kinetics. - d) Second order kinetics. - e) The system is at equilibrium and reaction proceeds equally in both directions.