CONCEPT: NON-IONIZABLE VS IONIZABLE R-GROUPS

□ Capable of forming _____ bonds.

● <u>Non-ionizable R-Groups</u> :	groups	acid/base reactions (H+ transfers).
□ Only have pKa va	lues (R-group does	$_{\rm L}$ have a pK _a).
□ amino acids have non-ionizable R-groups.		
● <u>lonizable R-Groups</u> : group resulting from acid/base reactions (H+ transfers).		
□ Have pK _a values	(R-group does have a p	K_a ; R-group p K_a sometimes called p K_R).

EXAMPLE: Total the number of amino acids in each of the indicated ionization groups.

PRACTICE: Which pair of amino acids could form an ionic bond between the R-groups?

a) Asp & Glu

b) Gly & Leu

c) His & Arg

d) Cys & Lys

Memorizing Ionization of R-Groups

Only ____ amino acids have ionizable R-groups.

□ Includes all charged amino acids plus ____ (__) & ____ (__).

EXAMPLE:

