CONCEPT: BETA STRAND - (β) Strands: secondary structure where the protein _____ extends & takes a periodic zig-zag conformation. The extended, periodic zig-zag structure repeats every ____ amino acid residues. - \Box per residue in a β-strand is *about* 3.5 Å. - \Box _____ for a β -strand is about 7 Å. **EXAMPLE:** Compare the rise/pitch/length of 5 amino acid residues in β -strand vs. α -helix conformation. **PRACTICE:** What is the approximate length of a β-strand containing 27 amino acids? - a) 94.5 Å - b) 189 Å - c) 75.4 Å - d) 40.5 Å ## **β-Strand Depictions** - β-strands are commonly depicted as extended broad _____ that can twist & point toward the ____-terminal end. - $\ \square$ Similar to α -helices, β -strands are stabilized by _____-bonding of the backbone. - \Box Unlike α -helices, the hydrogen bonds are ______ to the *directions* of the β -strands. **EXAMPLE:** Label the terminals of the beta strands. **PRACTICE:** Which phrase best describes the hydrogen bonds of a β -strand in silk fibroin, a protein with β -conformations? - a) They occur mainly near the amino and carboxyl termini of the β -strands. - b) They are perpendicular to the plane of the two β -strands. - c) They occur mainly between the atoms of the R groups. - d) They occur between backbone atoms of adjacent β -strands.