CONCEPT: BETA STRAND

- (β) Strands: secondary structure where the protein _____ extends & takes a periodic zig-zag conformation.
 The extended, periodic zig-zag structure repeats every ____ amino acid residues.
 - \Box per residue in a β-strand is *about* 3.5 Å.
 - \Box _____ for a β -strand is about 7 Å.

EXAMPLE: Compare the rise/pitch/length of 5 amino acid residues in β -strand vs. α -helix conformation.

PRACTICE: What is the approximate length of a β-strand containing 27 amino acids?

- a) 94.5 Å
- b) 189 Å
- c) 75.4 Å
- d) 40.5 Å

β-Strand Depictions

- β-strands are commonly depicted as extended broad _____ that can twist & point toward the ____-terminal end.
 - $\ \square$ Similar to α -helices, β -strands are stabilized by _____-bonding of the backbone.
 - \Box Unlike α -helices, the hydrogen bonds are ______ to the *directions* of the β -strands.

EXAMPLE: Label the terminals of the beta strands.

PRACTICE: Which phrase best describes the hydrogen bonds of a β -strand in silk fibroin, a protein with β -conformations?

- a) They occur mainly near the amino and carboxyl termini of the β -strands.
- b) They are perpendicular to the plane of the two β -strands.
- c) They occur mainly between the atoms of the R groups.
- d) They occur between backbone atoms of adjacent β -strands.

