CONCEPT: PROPERTIES OF WATER | ●Water (H ₂ O): polar | r, bent molecule with | n two covalent | bonds & two | of electrons. | | |-----------------------------------|-------------------------|---|------------------------|---|--| | □ Each H ₂ C |) forms up to h | nydrogen bonds with neig | hboring molecules. | | | | ●Abundance & stre | ngth of | _ bonds in water account | ts for many of its uni | ique properties: | | | □ boil | ing point | _ Heat Capacity | □ density of | solid ice (crystal formation) | | | □ mel | ting point | _ Heat of Vaporization | □ Strong surface t | tension (cohesion + adhesion) | | | EXAMPLE: | | |) | | | | δ ⁺ H | ο δ ⁻ | (+) · · · · · · · · · · · · · · · · · · · | (+)(-) | Adhesion Cohesion Adhesion Polar or Charged Object | | | <u>Solubility</u> | | | | | | | • Solubility: the prop | erty of a | to be dissolved by a sol | vent. | | | | ●H ₂ O is the biologic | cal solvent that intera | acts with other polar subs | tances & dissolves | · | | | □ <u>Electrolyt</u> | es: molecules that d | lissociate to form ions & f | orm dipole-dipole in | nteractions with H ₂ O. | | | o | electrolytes h | ave a shell/layer of H ₂ O r | nolecules surroundi | ing them (<u>hydration shell</u>). | | | ●Water has a high _ | cons | tant. | | | | | □ H ₂ O is pe | erfect for dissolving p | oroteins, carbohydrates, 8 | & nucleic acids (but | not). | | | EXAMPLE: | * | , | | \bigcirc_{δ} | | ## Water vs. Methane ●Compare H₂O to a molecule of similar molecular weight & size, methane (CH₄): ## Water Methane 1) Chemical Formula: H2O 1) Chemical Formula: CH₄ 2) Molar Mass: _____ g/mole 2) Molar Mass: 16.04 g/mole 3) Boiling Point: _____°C 3) Boiling Point: -161.5°C 4) Melting Point: _____°C 4) Melting Point: -182°C 5) Heat Capacity: 4.186 joules/g*K 5) Heat Capacity: 2.19 joules/g*K 6) Heat of Vaporization: 40.7 kJ/mole 6) Heat of Vaporization: 8.19 kJ/mole 7) Liquid Density (0°C): _____ g/mL 7) Liquid Density (-162°C): 0.42 g/mL 8) Solid Ice Density (0°C): 0.92 g/mL 8) Solid Density (-253°C): 0.52 g/mL 9) Dielectric Constant (25°C): 80 9) Dielectric Constant (25°C): 1.7 ## **CONCEPT:** PROPERTIES OF WATER PRACTICE: Water stuck to the glass window shield of a car is an example of what? - a) High Surface Tension - b) Adhesion - c) Cohesion - d) High Heat Capacity **PRACTICE:** Rank the following compounds according to increasing water solubility: - i) CH₃-CH₂-CH₂-CH₃ - ii) CH₃-CH₂-O-CH₂-CH₃ - iii) CH₃-CH₂-OH - iv) CH₃-OH - a) i < iii < iv < ii - b) i < ii < iv < iii - c) iii < iv < ii < i - d) i < ii < iii < iv - e) None of the above are correct.