CONCEPT: JAK-STAT SIGNALING

- JAK-STAT Signaling Pathway: a variation of RTKs that _____ covalently-bound Tyrosine Kinase domains.
 - □ HOWEVER, they can still _____-covalently recruit a soluble, cytosolic *Tyrosine Kinase* (JAK2).
 - □ *Janus Kinase 2* (______): a tyrosine kinase that phosphorylates & activates STAT.
 - □ Signal Transducers & Activators of Transcription (): a specific transcription factor.

Erythropoietin Signals via JAK-STAT Pathway

- Erythro**po**ietin (______): a 165-amino-acid protein *cytokine* released by *kidneys* to induce *hemopoiesis* in bone marrow.
 - □ _____: small, soluble proteins regulating development/differentiation/proliferation of cells (mainly blood).
 - Hemopoiesis: formation of ______ (red blood cells).
 - $\hfill\Box$ EPO (& other cytokines) commonly signal via a JAK-STAT pathway.

PRACTICE: Erythropoietin is a cytokine produced in the _____ and released into the _____ to promote cell growth.

a) Liver; Kidneys.

- c) Kidneys; Liver.
- b) Kidneys; Bone marrow.
- d) Liver; Bone marrow.

CONCEPT: JAK-STAT SIGNALING

JAK-STAT Pathway

- •JAK-STAT pathway occurs in _____ steps:
 - 1 EPO ligand binds Cytokine Receptor, causing it to ______.
 - 2 Dimerized Cytokine Receptor recruits & activates .
 - 3 Activated JAK2 _____ Cytokine Receptor (a process which resembles autophosphorylation).
 - 4 SH2 domain of STAT5 _____ phosphorylated Cytokine Receptor (bringing STAT5 closer to JAK).
 - **5** JAK2 _____ STAT5,
 - 6 Phosphorylated STAT5 _____ with another phosphorylated STAT5.
 - **7** STAT5 dimerization exposes a signal, transporting it to the ______ to function as a *transcription factor*.

PRACTICE: When the JAK-STAT signaling cascade is activated, which of the following occurs?

- a) Adenylate cyclase produces cAMP.
- c) Activated STAT5 is translocated to the nucleus.
- b) Ras GTPase activity is activated.
- d) Grb2 binds Sos.

PRACTICE: How could a cell inhibit the JAK-STAT signal transduction pathway?

- a) Dephosphorylating cytokine receptor tails using phosphatases.
- b) Dephosphorylating STAT dimers using phosphatases.
- c) Using proteins that bind STAT dimers to inhibit their DNA binding.
- d) All of the above are ways to inhibit the JAK-STAT signaling pathway.

CONCEPT: JAK-STAT SIGNALING

How to Remember JAK-STAT Signaling?

- 1 ____ucky (Ligand binds, and receptor dimerizes)
- 2 ____ack's (JAK activation)
- **3** ____i**g** (**P**hosphorylation of JAK)
- 4 ____potted (STAT5 recruitment)
- **5** ____olka (Phosphorylation of STAT5)
- 6 ____otted (Dimerization of STAT5)
- 7 ____ruffles (Transcription Regulation)

EXAMPLE: List the following steps of the JAK-STAT pathway in order of their occurrence (from 1-7):

- a) SH2 domain of STAT5 binds to the phosphorylated receptor _____.
- b) Recruitment and activation of JAK2 by the receptor _____.
- c) Regulation of transcription by dimerized STAT5 _____.
- d) JAK2 phosphorylation of the receptor _____.
- e) EPO binds stimulating receptor dimerization _____.
- f) Dimerization of two phosphorylated STAT5 proteins _____.
- g) JAK2 phosphorylation and activation of STAT5 _____.

PRACTICE: Which of the following statements is not true of the JAK-STAT signal transduction pathway?

- a) JAK2 is both a protein kinase and a target of phosphorylation.
- b) The ligand initiates a kinase cascade by phosphorylation of the JAK2 protein.
- c) Receptor dimerization is required for recruitment & phosphorylation by JAK2.
- d) Phosphorylated STAT5 protein enters the nucleus and functions as a transcription factor.
- e) The receptor must be phosphorylated in order to bind cytoplasmic STAT5 protein.