CONCEPT: QUATERNARY STRUCTURE

- Quaternary protein structure: single protein-complex consisting of ______ polypeptide chains. □ _____: any polypeptide chain that assembles with other polypeptide chains to form quaternary structure. □ Subunits can be identical ("_____") or different ("____").
- •Dimers, trimers, & tetramers consist of _____, ____, & ____ subunits, respectively.

EXAMPLE: Quaternary structure.

PRACTICE: Hemoglobin, a four-subunit protein, contains only two different types of subunits and is therefore a:

- a) Dimer.
- b) Heterodimer.
- c) Homotetramer.
- d) Heterotetramer.

Quaternary Structure Interactions

- •Subunits mainly interact with each other via ______ interactions (ex. hydrophobic effect). □ Disulfide bridges can _____ link subunits, but _____ of subunits are *not* covalently linked.
 - □ Conformational changes in one subunit can _____ the other subunits.

EXAMPLE:

PRACTICE: Which of the following statements about protein structure is correct?

- a) The α-helix is stabilized primarily by ionic interactions between amino acid R groups.
- b) Disulfide bond formation can only form between adjacent cysteine residues in a sequence.
- c) The stability of quaternary structure in all proteins is primarily due to covalent bonds between subunits.
- d) The denaturation of a protein always leads to irreversible loss of secondary & tertiary structure.
- e) Quaternary subunits complex primarily through hydrophobic interactions between chains.

CONCEPT: QUATERNARY STRUCTURE

PRACTICE: Which of the following correctly orders the protein structural terms from lowest to highest complexity?

- a) Primary structure < 2 subunits < motif < domain < secondary structure < tetramer < Tertiary structure.
- b) Primary structure < Secondary structure < domain < motif < Tertiary structure < 2 subunits < tetramer.
- c) Primary structure < Secondary structure < motif < 2 subunits < Tertiary structure < domain < tetramer.
- d) Primary structure < Secondary structure < motif < domain < Tertiary structure < 2 subunits < tetramer.
- e) Primary structure < motif < secondary structure < domain < 2 subunits < Tertiary structure < tetramer.

PRACTICE: Match each level of protein structure to the appropriate real-world description.				
	Primary Structure.	Secondary structure.	Tertiary structure.	Quaternary structure.
a)	Myoglobin folds so that most its hydrophobic residues are interior & its hydrophilic ones are exterior.			
b)	The preproinsulin polypeptide is 110 amino acids long.			
c)	Malate dehydrogenase, a citric acid cycle enzyme, is a homooctamer composed of 8 identical subunits.			

d) Proteins that use NADH as a cofactor contain an NADH-binding site comprised of anti-parallel β-sheets.