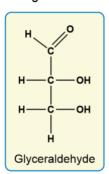
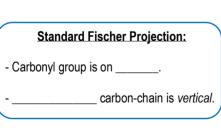
CONCEPT: MONOSACCHARIDE CONFIGURATIONS

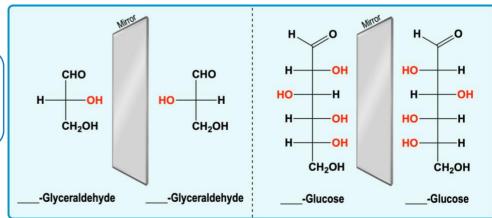

- Recall: configurations of monosaccharide chiral carbons can be designated using _____ different systems:
 - 1) Cahn-Ingold-Prelog (____/__).

2) Fischer's Convention (____/___).

1) R/S Configuration

- Cahn-Ingold-Prelog system designates absolute ____/__ configurations.
 - \Box Assign priorities 1 \rightarrow 4 (based on atomic ______) to each chemical group attached to the chiral carbon.
 - \Box Determine if priorities 1 \rightarrow 2 \rightarrow 3 (ignoring 4) are in a *clockwise* (____) or *counter-clockwise* (____) configuration.
 - □ Only if priority ____ is on a *wedge* (popping out of the page), assign the *opposite* configuration that it "looks like."

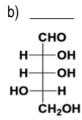

EXAMPLE: Determine the Cahn-Ingold-Prelog (R/S) configurations for glyceraldehyde's chiral center:

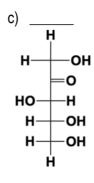


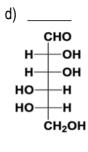
2) D/L Configuration

- Fischer's Convention designates ____/___ configurations *relative* to ______ enantiomers.
 - □ ____ configuration = -OH group _____; usually D = ____ configuration.
 - □ ____ configuration = -OH group _____; usually L = ____ configuration.
- •Monosaccharides have the same configuration as the _____ numbered chiral carbon.
 - □ In other words, a monosaccharide's configuration is that of the chiral carbon _____ from its carbonyl group.

EXAMPLE: Determine the Fischer Convention (D/L) configurations of the following glucose monosaccharides?


- •Unlike biological *amino acids* (which are usually ___ configuration), biological *carbohydrates* are usually ___ configuration.
 - ☐ The reason why life prefers L-amino-acids but —carbohydrates is *unknown*.

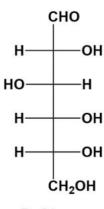

CONCEPT: MONOSACCHARIDE CONFIGURATIONS


PRACTICE: Identify the D/L and R/S configuration of all of the following monosaccharides:

a) ____ CH₂OH ⊢O H—OH

ĊH₂OH

PRACTICE: How many D-stereoisomers are possible for a D-ketopentose?


- a) 4.
- b) 8.
- c) 24.
- d) 2.
- e) 16.

PRACTICE: Which TWO of the following traits apply to Fischer's Convention for naming stereoisomers?

- a) Utilizes (+) and (-) designations.
- d) Requires drawing the compound with aldehyde/ketone at the top.
- b) Utilizes (D) and (L) designations.
- e) Based on optical properties of the compound in solution.
- c) Utilizes (R) and (S) designations.
- f) Reflects stereochemistry at multiple centers.

PRACTICE: How many possible epimers of D-glucose exist?

- a) 1.
- b) 2.
- c) 4.
- d) 6.
- e) 8.
- f) 16.

D-Glucose