CONCEPT: ALPHA HELIX PITCH AND RISE

- •α-Helix _____: the *length/distance per turn* along α-helix axis between adjacent, corresponding points (Pitch = ____ Å).
- □ *Pitch* indicates one single _____ of the α-helix backbone which has about _____ amino acid residues.
- the length/distance covered per amino acid residue along the helix axis (Rise = _____Å).
 - α-helix backbone turns _____ per residue.

EXAMPLE: Fill-in the blanks with the α -helix pitch & rise.

PRACTICE: How many amino acid residues are needed for the α-helix backbone to obtain exactly one full periodic repeat?

- a) 1.5
- b) 3.6
- c) 5.4
- d) 18

Calculating Length of an α-Helix

of an α-Helix can be calculated with the total number of amino acid residues & α-Helix rise (1.5 Å).

Length of
$$\alpha$$
-Helix = $\begin{pmatrix} \text{Total \# of Amino} \\ \text{Acid } \underline{\qquad} \end{pmatrix}$ x $\begin{pmatrix} \alpha$ -Helix $\underline{\qquad} \end{pmatrix}$

EXAMPLE: What is the length of an α-helix containing 52 amino acids?

- a) 33 Å
- b) 47 Å
- c) 69 Å
- d) 78 Å

PRACTICE: Suppose a cell membrane is 45 Å thick & an embedded protein has 7 parallel transmembrane α-helical segments. Calculate the minimum # of aa-residues required for all 7 α-helical segments to traverse the membrane.

- a) 125 residues.
- b) 39 residues.
- c) 71 residues.
- d) 210 residues.

PRACTICE: Hair is predominantly made of α -helix structures. Suppose hair grows at a rate of 20 cm/year. What is the rate at which amino acid residues are synthesized to account for the indicated growth of hair?

- a) 42 residues/sec
- b) 21 residues/sec c) 57 residues/sec
- d) 34 residues/sec