CONCEPT: TERTIARY STRUCTURE OF PROTEIN

- Tertiary protein structure: the folded, overall 3D-_____ of a protein.
 - □ Unlike secondary structure, tertiary structure is stabilized by ____-group interactions, ____ backbone interactions.
 - □ Amino acid R-groups that are _____ apart in sequence can still interact due to folding.

PRACTICE: Which of the following is true regarding the tertiary structure of G3P dehydrogenase?

- a) Its tertiary structure involves its entire 2D-structure.
- b) Its tertiary structure is primarily stabilized by peptide backbone interactions.
- c) Its R-group interactions stabilize its tertiary structure.
- d) Only R-groups that are nearby in its primary sequence can interact.

Tertiary Structure R-Group Interactions

● Most R-group interactions stabilizing tertiary structure are ______ interactions:

1. _____ bonding (salt bridges).

2. _____ effect.

3. ______ bonding.

4. ____ interactions.

●Two Cysteines can react/link to form a _____ residue containing a _____ bridge.

5. Disulfide bridges: type of ______ R-group interaction that could stabilize 3D-structure.

EXAMPLE:

PRACTICE: True or False: At pH 2, Gln & Met R-groups can form a salt bridge to stabilize tertiary structure.

- a) True.
- b) False.

CONCEPT: TERTIARY STRUCTURE OF PROTEIN

PRACTICE: Which statement regarding the tertiary structure of Ribonuclease A interactions is true?

- a) Its tertiary structure can only be stabilized by noncovalent bonds/interactions.
- b) Each of its amino acid R groups has the capability to be involved in tertiary structure stabilization.
- c) Its nonpolar amino acids do not stabilize tertiary structure.
- d) Its disulfide bridges are a type of noncovalent interaction.

